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Gallery of soft modes: Theory and experiment at a ferromagnetic quantum phase transition
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We examine the low-energy excitations in the vicinity of the quantum critical point in LiHoF4, a physical
realization of the transverse-field Ising model, focusing on the long-range fluctuations which soften to zero
energy at the ferromagnetic quantum phase transition. Microwave spectroscopy in tunable loop-gap resonator
structures identifies and characterizes the soft mode and higher-energy electronuclear states. We study these
modes as a function of frequency and magnetic fields applied transverse and parallel to the Ising axis. These are
understood in the context of a theoretical model of a soft electronuclear mode that interacts with soft photons
as well as soft phonons. We identify competing infrared divergences at the quantum critical point, coming from
the photons and the electronuclear soft mode. It is an incomplete cancellation of these divergences that leads to
the muted but distinct signatures observed in the experiments. The application of a longitudinal magnetic field
gaps the soft mode. Measurements well away from the quantum critical point reveal a set of “Walker” modes
associated with ferromagnetic domain dynamics.
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I. INTRODUCTION

At the approach to a quantum critical point, long-
wavelength fluctuations grow and their energy dives to zero.
This “soft mode” has long been a part of the accepted
paradigm for quantum phase transitions [1,2], but only re-
cently has been measured directly [3]. Experiments on a
physical realization of the canonical quantum spin model,
the Ising magnet in transverse magnetic field, demonstrated
that the soft mode is robust even in the presence of potential
sources of disruption from crystalline defects and a fluctuating
nuclear spin bath. This gapless behavior at the ferromag-
netic quantum critical point in LiHoF4 was not observed in
earlier neutron scattering measurements [4], which probed
excitations matched to the splitting between electronic spin
levels. Instead, microwave measurements at milliKelvin tem-
peratures were required to track the softening of the lowest
electronuclear mode, with level spacings ∼GHz (0.05 K).

The signature of the divergent mode recorded from the
microwave resonator as the transverse magnetic field was
swept through the critical point was surprisingly weak [3].
We show here that an understanding of the magnon-photon
interactions in the resonator is necessary to account for the
experimental results. Crucially, competing and canceling in-
frared divergences, familiar from quantum electrodynamics
and condensed matter problems like the Kondo effect, result
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in the soft mode emerging as a weak avoided level crossing. In
this paper, we develop a theory of magnon-photon hybridiza-
tion to motivate the experimental results, as well as an explicit
treatment of resonator performance, the magnetic modes in
the quantum magnet, and magnetic domain physics germane
to the sample response.

The electronuclear soft mode and the photons are not
the only soft modes in the system. There are soft acoustic
phonons, which also interact with the electronuclear mode,
and we highlight their main features. The textbook description
of a single soft mode at LiHoF4’s quantum critical point
simply does not capture the experimental reality of multiple
soft modes in interaction with each other, all influencing the
onset of magnetic order at the quantum phase transition.

More generally, our results connect to studies in recent
years of optical crystals doped with rare-earth ions as a
mechanism for microwave-optical conversion in hybrid quan-
tum systems [5–7]. Similarly, magnetic crystals such as
yttrium-iron-garnet (YIG) provide insight into fundamental
physical phenomena such as Bose-Einstein condensation [8]
and information processing using spin excitations [9]. Fully
concentrated rare-earth ion crystals can combine these prop-
erties, with a range of magnetic ordering properties [10] and
implications for quantum information processing.

We focus here on perhaps the best-understood example
of such a system, Li(RE,Y)F4, where different rare earths
(RE) result in different magnetic ground states with differ-
ent symmetries, and the possibility of chemical dilution by
nonmagnetic Y3+. Large single crystals are commercially
available due to the suitability of this family for infrared
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lasing rods [11]. The pure compound, with Ho3+ as the sole
rare earth is a dipolar-coupled ferromagnet with Ising spin
symmetry and a Curie temperature of 1.53 K.

The remainder of this paper is structured as follows. In
Sec. II, we describe the microscopic Hamiltonian and resul-
tant energy mode structure for LiHoF4, followed in Sec. III
by a discussion of the microwave resonator techniques used to
probe this mode structure. In Sec. IV, we discuss the implica-
tions of the combined LiHoF4 + resonator system, detailing
the magnon-photon hybridization that results. In Sec. V, we
develop the theory of mode softening at the quantum critical
point in the hybridized system, including the essential result
of a cancellation of infrared divergences leading to a weak
but nonzero physical signature of the soft mode. Having de-
veloped this model, we tie it back to the measured data in
Secs. VI and VII, and show that the soft mode and related
effects at the quantum phase transition (QPT) can be detected
in the proper experimental geometry. Finally, in Sec. VIII, we
show some additional features in the data arising from effects
unrelated to quantum criticality, and in particular discuss the
effects of domain dynamics in the microwave response.

II. HAMILTONIAN AND ELECTRONUCLEAR MODES

LiHoF4 is the canonical physical realization of the
transverse-field Ising model [12,13]. The Ho3+ ions form a
tetragonal scheelite structure with hyperfine coupling to the
165Ho nuclei (holmium is monoisotopic). The Hamiltonian
can be written as [14]

H =
∑

i

VC
( �Ji

) − gLμB

∑
i

BxJx
i + A

∑
i

�Ii · �Ji

− 1

2
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i j Jμ
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2
Jnn

∑
〈i j〉
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The crystal field, transverse-field Zeeman, hyperfine, dipolar
coupling, and antiferromagnetic exchange couplings comprise
the successive terms in the Hamiltonian.

These interactions result in the general energy level struc-
ture shown in Fig. 1(a). At low temperatures (T ∼ 1 K) the
crystal-field ground-state doublet provides an effective spin- 1

2
electronic spin, with these two lowest-lying levels split into
eight hyperfine levels by the 165Ho nuclei. Electric quadrupole
interactions introduce a further splitting of order 0.5 GHz [15].
One may truncate the Hamiltonian down to the two lowest
electronic levels leading to an effective Hamiltonian in which
the Ising nature of the material is apparent [14,16,17]:

H = −1

2

∑
i �= j

V zz
i j τ z

i τ
z
j − �

2

∑
i

τ x
i + Hhyp. (2)

The truncated electronic spin operators are given in terms
of Pauli operators by Jμ

i = Cμ(Bx ) + ∑
ν=x,y,z Cμν (Bx )τ ν

i , and
the effective transverse field �(Bx ) is the splitting of the two
lowest electronic levels in the physical transverse field Bx.

Solving the Hamiltonian at the mean field (MF) level pro-
vides good results given the long-range nature of the dipole
interaction and the absence of conduction electrons. An ex-
ception is the lowest electronuclear mode, which remains
gapped at the QPT. Adding fluctuations, but neglecting their

FIG. 1. Energy level structure of LiHoF4. (a) Zero-field energy
level hierarchy. Taken alone, the electronic spins form S = 1

2 dou-
blets with an energy gap of order 200 GHz. Hybridization with
the holmium nuclear spins gives rise to a ladder of states spaced
approximately 3 GHz apart. (b) Finite transverse-field electronuclear
modes calculated in the random phase approximation (RPA) using
a Green’s function approach (red) or the equation of motion of the
magnetization (blue) (see text). The mode that splits away from the
upper band near 3 T is the dominant mode in neutron scattering.
Green’s function curves adapted from Ref. [17].

interactions, leads to the random phase approximation (RPA)
which predicts that the soft mode indeed goes to zero at the
QPT [Fig. 1(b) bottom right]. This pair of plots also exhibits
the ∼3 GHz energy scale difference between hyperfine levels.
The mode that branches off from the higher cluster in the
upper figure is the dominant mode seen in neutron scattering
measurements [4]. Exploring the structure of the lower-energy
dynamics requires alternative experimental methods, which
we describe in Sec. III below.
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One may calculate the electronuclear modes of the LiHoF4

system making use of the Green’s function or, alternatively,
from the equation of motion for the system’s spins. In
the Green’s function approach, one calculates the connected
imaginary-time Green’s function, which, in Matsubara fre-
quency space, is given by [17,18]

Gμν
i j (iωn) = 1

β

∫ β

0
dτ eiωnτ Gμν

i j (τ )

= − 1

β

∫ β

0
dτ eiωnτ

〈
Tτ δJμ

i (τ )δJν
j (0)

〉
. (3)

The poles of this function determine the modes of the
system, and their residues determine the spectral weights.
The dynamic susceptibility of the electronic spins follows
from χ

μν
J (i j, ω) = −βGμν

i j (iωn → ω + i0+) = χ̃
μν
J (i j, ω) +

χ
μν

J,el(i j)δω,0, where in the final expression the dynamic sus-
ceptibility is divided into an inelastic component plus an
additional elastic term describing a quasielastic diffusive pole
of the system. The quasielastic diffusive pole vanishes in the
paramagnetic phase of the system and decays exponentially
with temperature. As we are interested in the finite-frequency
response, we will neglect this component of the susceptibility
in what follows.

Specializing to χ zz and transforming to momentum space,
the spectral representation of the inelastic component of the
dynamic susceptibility is

χ̃J (k, ω) =
∑

m

[
Am

k 2Em
k(

Em
k

)2 − (ω + i	m/2)2

]
, (4)

where Am
k is the spectral weight of the mth mode Em

k deter-
mined in the RPA [18,19]. For the 16-level truncated LiHoF4

Hamiltonian, given by Eq. (2), there are 120 possible RPA
modes corresponding to ground-state and excited-state tran-
sitions in the system. Note that the dynamic susceptibility of
the spins has units of inverse energy; it is related to the (di-
mensionless) susceptibility of the material by χ = 4πρsJDχJ ,
where ρs is the spin density and JD = μ0(gμB)2/(4π ) [18].
We will make use of the dynamic susceptibility to analyze
experimental resonator transmission spectra in Sec. VI.

Alternatively, one may calculate the modes of the elec-
tronuclear system from the lossless Landau-Lifshitz equa-
tion Ṁ = γ M × B or, equivalently, the Heisenberg equa-
tion of motion of the spin operators. This approach is useful
for analyzing magnetostatic “Walker” modes (see Sec. VIII).
However, it does not capture the excited-state transitions de-
termined by the dynamic susceptibility. The magnetization of
the holmium ions in LiHoF4 is given by M = ρsμ, where
ρs = N/V is the density of the holmium ions and the mag-
netic moment at a particular site is given by μ = γJJ + γI I.
The ratio of gyromagnetic ratios is |γI/γJ | = 5.2 × 10−4, so
we will drop the nuclear contributions to the moment from
subsequent calculations. Due to the strong hyperfine coupling,
the time evolution of the electronic component of the moment
is still strongly dependent on the nuclear spins. Rather than the
Landau-Lifshitz equation, one may equivalently formulate the
spin dynamics in terms of the Heisenberg equations of motion
of the spin operators. In order to determine the electronuclear
modes of LiHoF4, we consider the operators X i = {τ i, Ii},

where in the truncated Hamiltonian the electronic spin opera-
tors are Jμ

i = Cμ(Bx ) + ∑
ν=x,y,z Cμν (Bx )τ ν

i . The equation of
motion is then

d

dt
X i = i

h̄
[H, X i] = MX i, (5)

where M is a 6 × 6 matrix governing the electronuclear spin
dynamics. To proceed, we expand in fluctuations of the spins
about their MFs, and treat the fluctuations in the RPA.

In the RPA [20], we consider fluctuations of the electronic
spins about their MF values 〈τμ

i (t )〉 = 〈τμ〉0 + 〈δτμ
i (t )〉, and

likewise for the nuclear spins. The interaction between spins
at different sites is decoupled, so that 〈τμ

i τ ν
j 〉 = 〈τμ

i 〉〈τ ν
j 〉 for

any i �= j. Furthermore, we decouple the interaction between
the electronic and nuclear spins 〈τμ

i Iν
i 〉 = 〈τμ

i 〉〈Iν
i 〉. This step

is unnecessary in the Green’s function approach, in which we
work in a larger Hilbert space consisting of the single-ion
electronuclear Hubbard operators. The equation of motion in
the RPA becomes

d

dt
δX i = MRPAδX i and MMF〈X〉0 = 0. (6)

The eigenvalues of MRPA determine the electronuclear modes
of the LiHoF4 system and the equation on the right determines
the MF polarizations of the electronic and nuclear spins. The
RPA decoupling of the electronic and nuclear spins leads to
a discrepancy in the spin polarizations determined by the MF
component of Eq. (6), and the spin polarizations determined
self-consistently from the MF component of Eq. (2). In what
follows, we will use the MF spin polarizations determined
self-consistently from Eq. (2), rather than the values deter-
mined from the dynamic equation.

In the absence of the hyperfine interaction, the electronic
equation of motion yields a “longitudinal” zero mode ω‖ = 0,
as well as a pair of “transverse” modes ±ω⊥, where “lon-
gitudinal” and “transverse” mean parallel and orthogonal to
the spin polarization, respectively. When the nuclear spins are
included, the RPA equation of motion yields two zero modes,
and a pair of electronuclear modes at positive and negative
frequencies. The upper electronuclear mode corresponds to
the electronic excitation that has been measured in neutron
scattering experiments [4]; the lower mode is the electronu-
clear soft mode which governs the quantum critical behavior.

These modes are shown in Fig. 1(b), along with the modes
determined by the Green’s function. The two approaches are
in good agreement, with the dominant spectral weight of the
modes determined by the Green’s function coinciding with the
modes determined by the equation of motion. The primary
discrepancy between the two approaches is in the vicinity of
the quantum critical point, where the low-energy mode softens
to zero. This is to be expected because at the quantum critical
point the electronuclear correlations dropped when the equa-
tion of motion is treated in the RPA will become important.
In Sec. VIII, we will use the equation of motion to calculate
Walker modes present in the system; away from the quantum
critical point the equation of motion is expected to give good
results.
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III. LOOP-GAP RESONATORS

As discussed above and as illustrated in Fig. 1, the pre-
dicted electronuclear mode structure of LiHoF4 has a level
spacing of order 1–3 GHz (a few tens of µeV). Similarly, the
dynamics of many magnetic materials, particularly collective
modes in the close vicinity of a phase transition, are often
found at energies below 0.1 meV. Standard techniques such
as inelastic neutron scattering become increasingly difficult in
this regime. Energies of order 10 µeV, corresponding to fre-
quencies of a few GHz, are accessible via RF methods through
the direct application of an ac magnetic field to the material.
When studying quantum materials at milliKelvin tempera-
tures and in dc magnetic fields, a number of experimental
constraints and challenges arise. Standard resonant cavities
tuned to frequencies of order ∼1–3 GHz have a character-
istic size similar to their 10–30 cm wavelength, incompatible
with the space constraints of typical superconducting solenoid
magnets. Furthermore, achieving reasonable filling fractions
and hence sensitivities in such cavities requires (preferably
single-crystal) samples of similar size, which is impractical
for many materials of interest.

An attractive solution to these constraints is the loop-gap
resonator (LGR), developed from a magnetron topology for
use in S-band EPR [21], and subsequently applied to study
a wide variety of physical systems including hybrid quan-
tum devices [10,22], molecular nanomagnets [23], diamond
NV centers [24], and even searches for axion dark-matter
candidates [25]. As the name suggests, an LGR consists of
a metal block in which a set of loops and gaps have been
cut. The essential behavior of this construct is captured in
a lumped-element circuit picture, where the loops are es-
sentially single-turn inductors and the gaps are parallel-plate
capacitors [26]. The electric field is largely confined to the
gaps and the magnetic field to the loops. With the sample
of interest placed in one of the loops, this results in a purely
magnetic excitation. This separation of electric and magnetic
fields is also important in minimizing dielectric heating of the
sample, of special import at sub-Kelvin temperatures.

While the simplest LGR design is a tube with a length-
wise slot providing the inductive and capacitive components,
respectively [21], the performance can be improved by em-
ploying a more complex geometry. For instance, a three-loop
two-gap design offers advantages in suppressing radiation
loss [27]. Here, we use four-loop three-gap resonators
[Figs. 2(a) and 2(b)] where the additional geometry yields
two independent resonant modes at different frequencies. A
lumped-element circuit model for this system is shown in
Fig. 2(c), with each mode represented by a parallel RLC
circuit [22] and the input and output antenna ports are
capacitively coupled to the resonator. To validate the lumped-
element approach, the field patterns and frequency response
of these resonators were calculated using the finite-element
modeling package HFWORKS [28]. The field patterns of the ac
magnetic field of each of these dominant modes are plotted
in Fig. 2(c). In the low-frequency mode, the two central loops
(of which the rectangular one holds the sample) are opposite
in phase, with each central loop using the larger outer loop
as a return flux path. In the higher-frequency mode, the two
central loops are in phase, with the outer loops having the

FIG. 2. Resonator design and effective circuit (a) CAD rendering
and (b) photograph of the four-loop–three-gap (4L3G) resonator
design. The contours are cut using wire electric discharge machining.
The sample is placed in the rectangular loop, which has a very
uniform ac magnetic field profile. The circular loops act as a return
flux path, and the thin gaps (≈ 330 µm) concentrate the electric field
and provide capacitive tuning of the resonant modes by insertion
of a sapphire wafer. Pins attached to two external MMCX coaxial
connectors serve as input and output ports. The structure is made
from oxygen-free high-conductivity (OFHC) copper, and has overall
dimensions 60 × 20 × 3 mm. The resonator is enclosed in a copper
shielding box to minimize radiation loss. (c) Lumped-element circuit
model of the 4L3G resonator. Each of the two parallel RLC circuits in
the middle represent one of the modes, and the coupling is modeled
with capacitors between the RLC circuits and input and output ports.
(d) Finite-element calculation showing magnetic field density for
the two primary modes of the resonator. (e) Calculated (top) and
measured (bottom) frequency response for the multimode resonator,
showing good agreement between the model and the physical device.

opposite phase of return flux, creating an overall quadrupole
field pattern. A lower-frequency “dark” mode which has negli-
gible intensity at the sample location is not shown, nor are the
higher-frequency modes where the enclosure box halves form
typical transverse electric (TE) and transverse magnetic (TM)
resonant cavity modes. We demonstrate in Fig. 2(e) that the
calculated frequency response is a good match to the actual
measured behavior. Additional details on the finite-element
modeling are given in Ref. [29].

A further feature of the LGR approach is its tunability.
The active frequency can be varied over several GHz by in-
troducing a dielectric material into the gaps, such as wafers
of sapphire or alumina ceramic [23]. This permits using one
resonator to probe a range of frequencies. In the 4L3G con-
figuration, the distribution of electric fields differs for each
mode, allowing independent tuning of the modes [29]. The
implementation of the 4L3G design used here has a total
capacitance that can be varied over an order of magnitude:
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from 0.86 pF with no dielectric in the gaps to as high as
8.6 pF for the gaps completely filled with sapphire. The ef-
fective inductances are 1.1 and 0.3 nH for the lower and upper
resonance modes, respectively. For situations where multiple
modes introduce unwanted complexity, the simpler 3L2G ge-
ometry may be preferable. We used such a single-mode cavity
with maximum capacitance of 51 pF and 0.5 nH inductance at
our lowest probe frequencies (<1 GHz).

With a sample in the resonator, any nonzero magnetic
susceptibility will change the effective inductance and hence
the resonant frequency and quality factor of the overall circuit.
Here, we derive a general expression for the response of the
circuit; in the following sections we combine this general
form with the specifics of the LiHoF4 Hamiltonian to obtain
a model that can be compared directly to the experimental
data. Near resonance (ω ≈ ωr = 1/

√
LC), one may write the

complex impedance of an individual parallel RLC circuit
as [30]

ZRLC = R

1 + 2 jQ(ω/ωr − 1)
, (7)

where the quality factor of the resonator is Q = ωr/γ ,
with γ = 1/(RC). For a sample with complex susceptibility
χ (B, ω) and filling factor η, the inductance becomes L →
L′ = [1 + η2χ (B, ω)]L. Assuming that |η2χ |  1,

ZRLC = Rγ /2e− jπ/2

ω − (ωr − g2χ ′) − j(γ /2 + g2χ ′′)
, (8)

where the susceptibility has been separated into its real and
imaginary parts, χ = χ ′ − jχ ′′ (the minus sign is conven-
tional in the electrical engineering literature). In terms of the
circuit parameters, the coupling strength is g2 = η2ωr/2. As
one approaches the system’s critical point, the susceptibility
diverges, and the condition |η2χ |  1 no longer holds. The
enhanced inductance of the RLC circuit drives the resonator
mode to zero, ωr → 0 as L′ → ∞, at which point one expects
the light-matter system to undergo a superradiant quantum
phase transition. However, this neglects the effects of damping
and decoherence of the LiHoF4 system which may prevent
superradiance [19].

In a two-port microwave network, a resonator mode can
be modeled as a T network, with the antenna impedances
Za on the series branches, the transmission lines at the input
and output ports each having impedance Z0, and the parallel
resonator impedance being ZRLC. Deriving the S parameters
for such a circuit is straightforward [30]. The result for the
transmission function is

S21 = Z0/(Za + Z0)

1 + (Za + Z0)/(2ZRLC)

≈ Ae− jθ

ω − (ωr − g2χ ′) − j(	r/2 + g2χ ′′)
. (9)

In the final expression, we have made use of Eq. (8). The
overall amplitude and phase of the transmission function
may depend on attenuation in the transmission lines, the
reference planes of the input and output ports, and other
details of the microwave resonator [30,31]; here, we leave
A and θ as unspecified parameters. The damping of the res-
onator mode is related to the damping of the RLC circuit

FIG. 3. Mean-field susceptibility calculations and the effects of
damping. (a) Transmission coefficient |S21|2, using a mean-field
solution to (2) and the circuit-model expression for the S parame-
ters (9) in the weak-damping limit with 	1 = 1 µK and η = 0.67.
(b) |S21|2 calculated in the strong-damping limit 	1 = 500 mK, η =
0.8. (c) Experimental |S21|2 at T = 55 mK. The evolution of the
mode, and in particular the essentially linear approach to the quantum
phase transition at Ht = 4.9 T, are best matched by the calculations
shown in (b), suggesting that the system is in a strong-damping limit.

by 	r = γ [1 + 2R/(Za + Z0)]. In Sec. IV, we compare the
transmission function obtained from the circuit model with the
transmission function obtained from a microscopic treatment
of the magnon-photon system [19,32].

To connect these calculations with measurements, we plot
in Fig. 3 the transmitivity |S21|2, inserting into (9) mean-field
solutions to (2). We examine weak and strong damping of
the lowest MF mode, 	1 of 1 µK and 500 mK [Figs. 3(a)
and 3(b), respectively], and compare with the measured S21

[Fig. 3(c)]. The filling factors η in Figs. 3(a) and 3(b) (0.67 and
0.8, respectively) were tuned to match the overall span of the
data, and the damping of all other modes was set to 1 µK. In
comparing the mean-field calculations to the measurements,
we note first that MF solutions are known to overestimate the
critical field for the quantum phase transition in LiHoF4 [33].
We examine instead the shape of the resonator response on the
approach to the phase transition. As shown in Fig. 3(c), the
peak resonance frequency evolves approximately linearly as
a function of transverse magnetic field. Comparing with the
calculations, it is clear that the strong-damping limit shown
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in Fig. 3(b) best reproduces the observed behavior. More
in-depth comparisons between measurement and calculation,
including the full RPA description from above, are presented
below.

We note also that by measuring the response with a vector
network analyzer, one may probe both the amplitude and
phase of the transmission function. No new information is
present in the phase data; however, in some instances it pro-
vides better resolution of the resonator modes. In a bimodal
resonator, assuming that the resonator modes are weakly
coupled, the total transmission is found by summing the
transmission functions of the two individual resonators S21 =
Sa

21 + Sb
21, where, in the absence of the magnetic material,

Sa,b
21 = Aa,be− jθa,b

ω − ωa,b − j	a,b/2
. (10)

Assuming the phase shift of the two modes is the same,
θa = θb, one finds a minimum (an antiresonance) in the total
transmission function at

ωanti = Aaωb + Abωa

Aa + Ab
. (11)

If the amplitudes of the two modes are the same, the antireso-
nance occurs at their average value. One may tune the location
of the antiresonance by adjusting the amplitudes of the modes,
as illustrated in Sec. VI below.

IV. MAGNON-PHOTON HYBRIDIZATION

In the presence of strong coupling between light and mat-
ter, one must consider hybridization of the modes. In the
context of microwave cavity photons and spin excitations,
these hybridized excitations are known as cavity magnon-
polaritons [34]. Commonly studied in the context of yttrium
iron garnet (YIG) crystals, these systems can display a vari-
ety of interesting phenomena including magnetically induced
transparency [35].

The behavior of coupled magnon-photon modes is char-
acterized by the cooperativity parameter C = g2

m/κγ [36],
which indicates the coupling strength relative to dissipation
sources. For C > 1 we enter the strong coupling regime where
mode splitting becomes prominent, resulting in avoided level
crossings. At the experimentally relevant temperatures and
frequencies, we may drop the elastic contribution to the dy-
namic susceptibility discussed following Eq. (3), and write an
effective bosonic Hamiltonian describing the magnon-photon
interactions [19]:

Hmp = ωra†a +
M∑

m=1

ωmb†
mbm

+ (a† + a)
M∑

m=1

gm(b†
m + bm). (12)

In terms of the spin-photon coupling strength α =
η
√

2π
√

h̄ωr
√

ρsJD, the magnon-photon coupling strength is
given by g2

m = α2Am, where Am is the spectral weight of the
magnon mode. One may diagonalize this Hamiltonian
to obtain the magnon-polariton modes of the system
Hmp = ∑M+1

m=1 �md†
mdm. At finite temperatures, considering

the truncated LiHoF4 Hamiltonian, one has M = 120 with
magnon modes corresponding to all the possible transitions
between the 16 low-energy electronuclear modes. Many
of these modes will be suppressed thermally, or will carry
negligible spectral weight, and may be neglected in the
calculations.

From a microscopic description of the spin-photon system
[19], one may calculate the imaginary-time magnon-polariton
propagator, defined by Dmp(τ ) =〈Tτ (a†(τ ) + a(τ ))(a† + a)〉.
At Matsubara frequency z = iωn = 2π in/β, the propagator is
given by

Dmp(z) = −2ωr

β

[
1

z2 − ω2
r + α22ωrχJ (z)

]
. (13)

We express Dmp(z) in terms of the dynamic spin suscep-
tibility [see Eq. (4)] rather than the susceptibility of the
material used in the circuit model analysis. This propagator
is related to the response function of the cavity photons by
Dret

mp(ω) = βDmp(z → ω + i0+). The imaginary component
of the response function determines the energy absorbed by
the resonator photons, which we assume to be proportional
to the resonator transmission function |S21|2 ∝ Im[Dret

mp(ω)]
[32]. Using the spectral representation of χJ (z) [Eq. (4)]
and comparing Eq. (13) with the propagator obtained from
Eq. (12), one obtains the result gm = α2Am.

One may include phenomenological damping of the res-
onator mode, in which case the resonator transmission is
given by

|S21|2 ∝ Im
[
Dret

mp

] = 2ωωr	mp(
ω2 − ω2

mp

)2 + (ω	mp)2
, (14)

where

ω2
mp = ω2

r + (	r/2)2 − 2α2ωrχ
′
J (ω) (15)

determines the magnon-polariton modes of the system, and
the damping function is

ω	mp = ω	r + 2α2ωrχ
′′
J (ω). (16)

The factor of (	r/2)2 in the mode equation is a counterterm
which eliminates a shift in the resonator frequency due to its
damping.

Recall that from the circuit model the transmission func-
tion [Eq. (9)] is given by

|S21|2 ∝ 1

[ω − (ωr − g2χ ′(ω)]2 + [	r/2 + g2χ ′′(ω)]
, (17)

where χ (ω) = 4πρsJDχJ (ω). Comparing Eq. (17) to (13),
one sees g2 = α22ωr/(4πρsJD) = η2ωr/2, so the coupling
in the microscopic theory is in agreement with the coupling
determined by the circuit model. The transmission function
given in Eq. (14) differs from the transmission function de-
termined by the circuit model in two important ways: (1)
The transmission function determined by the resonator photon
response function contains counter-rotating terms not present
in the circuit model. These terms may be important when
the magnon and photon modes are strongly coupled. (2) In
the circuit model, at the magnon mode energies where χ ′′
becomes large, the resonator transmission is attenuated. In
Eq. (14), the factor of 	mp in the numerator contains a term
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FIG. 4. Transmittance of the combined resonator-LiHoF4 system
calculated using (a) the microscopic model (14), and (b) the circuit
model (9). The calculations are done at T = 50 mK, with the filling
factor set to η = 0.25. The LiHoF4 susceptibility is calculated in MF
theory. Dampings of the resonator mode and the magnon modes are
set to a fixed constant 	 = 1 µK ≈ 20.8 MHz.

proportional to χ ′′, so there will be resonant transmission of
photons at the magnon mode energies.

We compare in Fig. 4 the single-ion (MF) resonator trans-
mission function calculated from the circuit model and from
the microscopic theory which includes counter-rotating terms.
Transmission by the magnon modes is stronger in the micro-
scopic theory due to the factor of χ ′′(ω) in the numerator
of the transmission function. The frequency dependence of
the numerator leads to a larger avoided level crossing in the
microscopic transmission data than in the circuit model, and
the minimum of the lower polariton mode in the circuit model
is at fmin ≈ 2.57 GHz, whereas in the microscopic model
fmin ≈ 2.44 GHz. In an experiment, one expects some of the
energy absorbed by the damped magnon modes to contribute
to resonator transmission, and some of the energy to be lost to
the system’s environment; a realistic model of the resonator
transmission lies somewhere in-between these two models.
In what follows, we will make use of Eq. (14) to model

the resonator transmission as this function more accurately
reflects what is seen in the experiments.

The MF and RPA models have comparable results for f >

3.5 GHz, whereas a significant discrepancy is seen at lower
frequencies where the lowest-energy magnon mode is seen to
soften to zero in the RPA. The divergent spectral weight of
the soft mode leads to strong coupling, and, in the absence of
dissipation and decoherence, drives the lower polariton mode
to zero, at which point the system undergoes a superradiant
phase transition. In experiment, dissipation and decoherence
forestall this transition, and the soft mode shows up as a weak
avoided level crossing, or a resonance in the dissipation of the
lower polariton mode [19]. This is discussed explicitly in the
following section.

V. ROLE OF SOFT PHOTONS IN A CAVITY

A naive treatment of the transmitivity in our experiment
predicts that it will diverge at the resonance associated with
the soft mode, when the frequency of the soft mode (which
couples to photons) goes to zero. This is incorrect, for reasons
we have introduced in our previous work [3,19]. This diver-
gence is reminiscent of what happens in any calculation of
the effect of soft photons on electronic processes, a problem
much discussed over the years. Here, we give some more
general insight into the physics. In Appendix A, we recall key
features of infrared (IR) divergences in quantum electrody-
namics (QED). The discussion in this section builds on that
background to treat photons in a cavity.

In general we are dealing with an optical cavity that
supports both a driving laser mode and internal degrees of
freedom, the ones of interest here being a combination of
photons and electronuclear magnons. This problem is similar
to the standard optomechanical system, in which the laser
drives both internal optical modes and mechanical (mirror)
modes [37], and where a set of oscillators represents the
photon modes (this can be supplemented, if necessary, by the
introduction of a set of “spin bath” modes [38], describing
localized environmental modes in the cavity, such as two-level
systems or spin impurities).

In the present case, we have a cavity with an interaction
Hmp of strength gm between the mth electronuclear magnon
mode and the photons [cf. Eq. (12) above]; we recall that
g2

m = α2Am, where Am = limk→0 Am(k) is the k → 0 limit of
the spectral weight for the mth electronuclear mode and α is
the spin-photon coupling.

There are three things that we should like to emphasize
here:

(i) As already noted in our previous work [3], our sys-
tem can be mapped to a standard Caldeira-Leggett model
[39]. With the introduction of a suitable coordinate Q for the
magnon mode of interest (here the zero mode), one simply has
a problem of an oscillator coupled to an oscillator bath [3,19],
for which the decoherence functional has the usual form

	(Q, Q′) =
∫ ∞

0

dω

π h̄
J (ω)

∫ t

dτ1

∫ τ1

dτ2 cos ω(τ1 − τ2)

× coth
β h̄ω

2
[Q(τ1) − Q′(τ1)] [Q(τ2) − Q′(τ2)],

(18)
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where the “Caldeira-Leggett spectral function” J (ω) in princi-
ple can be extracted directly from experiment. The oscillators
in the oscillator bath, with frequencies {ωq}, represent the
photons which damp the electronuclear zero mode.

(ii) The Caldeira-Leggett spectral function J (ω) and the
zero-mode damping γ0 can be written as [3]

J (ω) = π

2

∑
q

g2

ωq
δ(ω − ωq) (19)

and

γ0(ω) = lim
ε→0+

∑
q

g2

ωq

iω2

ω2 − ω2
q + iωε

. (20)

Both the coupling g2 to the zero mode and the zero-mode
damping γ0 diverge as we approach the critical field, to pro-
duce the finite result for S21(ω) that is seen in the experiment.

(iii) The dynamic susceptibility χ (ω) is written as

χ (ω) =
∑

m

Am

[
1

ω + Em + iγm/2
− 1

ω − Em + iγm/2

]
,

(21)

where γm is the damping coefficient for the mth electronuclear
magnon mode.

We can now ask what, if any, is the relationship between
the divergences enumerated here, in g0 and in γ0, and the
divergences encountered in QED in the IR limit? The answer
to this question is not obvious because the diagrammatic ap-
proximation schemes used in strongly correlated condensed
matter physics are not typically designed to extract the leading
terms in an asymptotic expansion about zero energy. Instead,
they are set up so that all conservation laws (Ward identities)
for the system are obeyed. In practice one employs a “conserv-
ing approximation” [40,41] relating the electron propagator
K2(p), the three-point vertex �3(p, q), the four-point electron
scattering function 	(p, p′; q), and the irreducible four-point
vertex I (p, p′) (noting that such conserving approximations
still violate crossing symmetry [42]).

There are notable exceptions to this: for example, anal-
yses have been done for the Kondo problem using either a
mapping to the spin-boson system, with J (ω) taking Ohmic
form [43], or written in such a way that one sums infinite
classes of diagrams in which one sees the cancellations be-
tween vertex and self-energy terms [44,45]. In the same way,
one can derive a form for J (ω) for QED consistent with the
leading contributions to low-energy physical processes [46].
However, in a Caldeira-Leggett formulation the complexity
of the cancellation between vertex corrections and radiative
corrections is actually concealed; we only see the final result.

The random phase approximation (RPA) which we have
used to describe the electronuclear collective modes in the
present system is actually a very well-known and simple
conserving approximation. One assumes a Hartree-Fock form
for the self-energy �(p, ε) [see Fig. 5(a)], which leads to the
irreducible four-point vertex I (p, p′, ε, ε′) shown in Fig. 5(b),
and the dynamic susceptibility χ (q, ω) shown in Fig. 5(c)
(note that in the vacuum the Hartree tadpole contribution is
necessarily zero, but is in general finite in the medium). If
we treat the damping parameter γm in our phenomenological

FIG. 5. The Hartree-Fock/RPA approximation used to calculate
the dynamic susceptibility χ (ω) in the text. (a) The self-energy.
The solid line is the HF propagator Go, and the hatched line is
the renormalized photon propagator D. (b) The resulting irreducible
four-point vertex I, containing both Hartree and Fock terms. (c) The
resulting Dyson equation for the dynamic susceptibility χ (ω).

formula (21) for χ (ω) as an adjustable parameter, then the
interaction line (which is just a photon moving in the cavity,
in interaction with the medium as well as the cavity) in the
formula for �(p, ε) also must be treated as phenomenological.
On the other hand we can calculate the photon propagator
microscopically, in the framework of the same RPA. The pho-
ton propagator has the Dyson equation D = Do + Do�HFAD,
where �HFA(q, ω) is the appropriate photon polarization part,
incorporating, at RPA level, the effects of the medium and the
cavity [compare Fig. 5(d)].

Without going into any details about such a calculation,
we make the essential point that such a calculation does not
include all of the contributions from those IR photons in
interaction with the zero mode. Figures 6(a) and 6(b) show
contributions that are not included in the RPA irreducible
four-point vertex, but which will alter the result for this in-
teraction, and these are just the first terms in an infinite set of
contributions. To sum all of these to get the leading divergent
behavior in the zero-energy limit, and how this affects the sus-
ceptibility and the damping function, is a formidable task (of
considerably greater complexity than that involved in working
all this out for the vacuum!), which we will not attempt here.

However, it is clear that if we correct the RPA by incor-
porating these extra IR terms, we will get an extra dissipative
contribution to the response functions in the low-energy limit.
The most immediate effect of this is the replacement of the su-
perradiant phase transition, predicted by RPA, by the weakly
avoided level crossing seen in the experiments. It will be
of considerable interest, for future work, to give a complete
quantitative theory of the photonic IR divergences for this
system.

Summary. There is a hierarchy of IR divergences in the
interaction of photons with electron spin, with cancellations
going on between these which lead to finite physical results at
low energy. The RPA does incorporate some cancellation of
IR divergences, but it does not give the complete story because
conserving approximations like the RPA do not capture all the
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FIG. 6. Examples of corrections to the irreducible four-point ver-
tex, which play a role in determining the IR form of χ (ω) when the
internal photon momentum energies go to zero. In (a) and (b) we
depict second-order vertex corrections to the lowest-order Hartree
contribution; in (c) and (d) we see two other second-order correc-
tions; and in (e) we see a third-order term which provides a vertex
correction to (c).

divergent terms, even at leading order. In cases where one has
strong IR divergences (as in, e.g., the Kondo problem), this
becomes a serious problem, and radically alters the low-T
behavior. In the present case, the RPA appears to capture
some key aspects of the behavior, at least for the coupling
strengths prevailing in the experiment; however, it misses con-
tributions to the dissipation coming from soft photons, which
have the crucial effect of converting a singular response, with
a predicted superradiant transition, to a weakly avoided level
crossing. Fits to the data are possible, but we note that the full
story of the IR divergent contributions is still to be resolved. In
particular, understanding the manner in which spectral weight
transfer enters as a variable is important to include in the
interpretation of the fits in the RPA approximation.

Given the importance of soft photons for the understanding
of the soft electronuclear mode, a natural question is what role
do soft phonons play around the quantum critical point? As far
as we are aware, there has been no attempt to investigate this
question at all, a curious omission given that the spin-phonon
couplings in the LiHoF4 system are not weak [47] and one
sees clear phonon bottleneck behavior in the spin dynamics.
While a full quantitative treatment of this question is beyond
the scope of this paper, we briefly touch on the major points
in Appendix B. We fully expect that low-energy phonons also
will modify the low-energy physics, via their coupling to the
electronuclear soft mode.

VI. EXPERIMENTAL RESULTS: SOFT-MODE SPECTRA

In order to connect the microscopic theory with the
measured microwave spectra, we start with the dynamic sus-
ceptibility calculated using either a single-ion (MF) model or
the RPA model described in Sec. II and then combine with
the response of a resonator. If the cavity modes are weakly
coupled, one may consider a linear superposition of the trans-
mission from the two modes S21 = Sa

21 + Sb
21, as discussed in

the final paragraph of Sec. III. Under that same assumption,
the absorption and dispersion of the sample can be extracted
by fitting each |S21( f )|2 spectrum to a Lorentzian form

|S21( f )|2 = A

1 + 4Q2( f / f0 − 1)2 , (22)

with f0 the center frequency and Q the quality factor. f0 serves
as a measure of the real part of the sample susceptibility and
1/Q the imaginary part. For a bimodal resonator (see Fig. 2
and the end of Sec. III), a comparison between model and
measurement is shown in Fig. 7. The MF model provides an
accurate description of the majority of the features in the data.
The dark band at 3.5 GHz is an indication of an antiresonance
in the LGR, the frequency of which is sensitive to the relative
amplitudes of the two modes. The principal exceptions are the
avoided level crossings visible in the data at approximately
3.5 T and 3.1 GHz; these are ascribed to a magnetostatic
(Walker) mode and a collective RPA soft mode. We plot the
results of these fits to the data in Fig. 7(c). Both the dominant
single-ion excitation, and the weaker soft mode and Walker
mode, are clearly visible as peaks in the dissipation.

To track the evolution of the modes as a function of
transverse magnetic field and frequency, we repeat these mea-
surements for a series of resonator tunings, with the lower
mode ranging from 0.9 to 2.9 GHz and the upper mode from
3 to 4.5 GHz. In the vicinity of the QPT, the excitations in
LiHoF4 primarily lie in the range spanned by the lower res-
onator mode; representative traces of 1/Q are shown in Fig. 8.
As the individual modes have finite width and in the vicinity
of the phase transition often overlap, we perform simultaneous
multimode fits to identify and track the different excitations
(dashed lines in Fig. 8). The assignment of experimental
peaks in 1/Q to different underlying physical mechanisms
is based on comparison with the single-ion and RPA models
discussed above, the longitudinal magnetic-field dependence
of the peaks [3] and a delineation of magnetostatic (Walker)
modes discussed below in Sec. VIII. In particular, Fig. 8(d)
shows the evolution of the lowest-lying hybrid electronuclear
mode, with the salient feature being the softening of the mode
to energies below kBT in the vicinity of the QPT (adapted
from Ref. [3]).

We examine in Fig. 9 the temperature dependence of the
microwave absorption to further characterize the behavior of
the higher-energy transitions. Due to the relatively weak inten-
sity of the off-resonance response, the data in this figure are
shown normalized by the Ht = 0 behavior. The two features
dominant at low temperature, the cusp in the vicinity of the
QPT and the avoided level crossing where the electronuclear
mode energy approaches the 3.6-GHz upper resonance of the
LGR, both diminish in intensity and move to lower transverse
field as the temperature is increased. The cusp associated with
the paramagnetic transition is visible at 250 mK, but it is
thermally washed out at higher T , while the avoided level
crossing remains observable (albeit with lessened strength)
to T ∼ 1 K, reflecting a separation of energy scales between
single ion and collective behavior.

If the coupling between the microwave field and the sample
is sufficiently strong, we can measure the dispersive response
in the weak transmitted field regime away from the cavity
resonance (at 4.2 GHz). This response is most easily seen in
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FIG. 7. (a) Transmission spectrum |S21|2 for a bimodal resonator
using the susceptibility calculated in the single-ion (MF) approxima-
tion input into the lumped-element model. (b) Measured transmission
of LiHoF4 at T = 55 mK corresponding to the calculation in (a).
Strong coupling to the first-excited-state transition is visible, as well
as avoided level crossings with the two cavity modes. Visible to the
left of the dominant mode are a pair of smaller avoided level cross-
ings due to a Walker mode and the soft collective mode, discussed
in the text. (c) Results of fitting the cavity resonance starting at
3.2 GHz in (b) to a Lorentzian model. The center frequency f0 (top)
and inverse quality factor 1/Q (bottom), are related to the real and
imaginary components of the dynamic susceptibility, respectively.
Using the 1/Q data, we can fit another Lorentzian form to the small
amplitude dual peaks, tracking a Walker mode and the collective
soft mode discussed in the text. Finally, there is strong absorption
just prior to the transition due to a level crossing with the lowest
single-ion excitation.

the relative phase shift of S21, as illustrated in Fig. 10. Here,
the frequency-dependent relative phase is defined relative to
the behavior at low transverse field �φ( f , H ) = φ( f , H ) −
〈φ( f , H < 3 T)〉.

Several features are apparent from the data in Fig. 10. The
strongest feature corresponds to the lowest single-ion (MF)

FIG. 8. Mode structure in the vicinity of the quantum critical
point. (a)–(c) Dissipation 1/Q vs transverse magnetic field for res-
onators tuned to 2.61, 1.88, and 0.93 GHz, respectively. Peaks in the
dissipation arising from the electronuclear soft mode, magnetostatic
Walker modes, and the quantum phase transition coexist, and can
be fitted to a sum of Lorentzians (dashed curves). Shaded rectangles
mark the approximate position of the quantum critical regime, with
the center determined from the peak in the real susceptibility for each
frequency and width equal to the field scale corresponding to hν for
each measurement. (d) Evolution of the electronuclear mode as a
function of frequency; curve is a guide to the eye. The data shown
in this panel were presented previously in Ref. [3].

transition. It evolves continuously as a function of transverse
field and has a sharp minimum at the ferromagnetic to para-
magnetic phase transition. In the ferromagnetic phase, two
features are visible below the dominant mode: a magnetostatic
Walker mode and the collective soft mode. Finally, constant-
field cuts reveal an additional mode above the dominant mode
which persists into the paramagnetic phase. As such, it cannot
arise from domain-based phenomena, and we identify it with
a transition between excited states of the material.

It is possible to test an additional aspect of the theory
[17] by varying the orientation of the crystal’s Ising axis with
regard to the applied ac and dc magnetic fields. The model
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FIG. 9. Temperature dependence of the off-resonance transition
to the higher-energy levels. Data are shown normalized by the Ht = 0
transmission intensity. As the thermal energy becomes comparable
to and greater than the mode splitting, the transitions wash out.
Simultaneously, the transverse-field scale decreases due to the shape
of the ferromagnet to paramagnet phase boundary.

FIG. 10. (a) Phase shift of S21 relative to low-field behavior. The
top panel shows a horizontal slice at 3.1 GHz; the dominant peak at
4.5 T is the lowest single-ion (MF) transition and the two small peaks
marked with arrows indicate a Walker mode and the soft collective
mode. The vertical slice at 5 T (right) shows the lowest single-ion
transition (dominant peak) and a higher-lying transition between
excited states (marked with arrow).

FIG. 11. Transverse susceptibility χ yy. In the vicinity of the
quantum phase transition (vertical dashed line), the RPA model pre-
dicts χ yy → 0, consistent with the extremely small measured sample
response. At low transverse fields, a pair of avoided level crossings
are observed between the resonator mode at 4.49 GHz and the non-
monotonic evolution of the soft mode. The black curve shows the
qualitatively correct but approximately 0.15% underestimate from
the RPA prediction for that mode. The transverse field for the RPA
calculation has been scaled up by 7% to account for the field mis-
match discussed in Ref. [33] and in Sec. III above.

predicts that in the vicinity of the quantum phase transition,
the lowest-energy susceptibility for ac fields parallel to the
crystalline Ising axis [χ zz(ω)] diverges for the soft mode,
whereas for ac fields in the transverse plane, χ yy(ω) vanishes
at the quantum critical point. We test this prediction by re-
orienting the sample in the resonator such that the Ising axis
(crystal c), the dc magnetic field, and the ac magnetic field
of the dominant microwave mode are mutually perpendicu-
lar, thus probing χ yy. We show in Fig. 11 that the resonator
frequency varies by only 0.2% across the entire field range,
more than an order of magnitude smaller than the χ zz response
plotted in Figs. 3 and 7. This experimental result is consistent
with the RPA determination of a strongly suppressed χ yy.
Moreover, we are able to test the RPA calculation that the
soft mode is nonmonotonic as a function of transverse field,
peaking at 4.487 GHz at approximately 0.9 T (solid curve in
Fig. 11). This field scale is where the transverse field starts to
mix hyperfine states of the system. With the resonator tuned
to 4.49 GHz, it is possible to discern the pair of avoided level
crossings seen in Fig. 11 at transverse fields of 0.5 and 1.3 T.
We note that the RPA predictions are a good quantitative
match to the observed data, underestimating the energy by
only 0.15%.

VII. EFFECTS OF LONGITUDINAL FIELD

Given that the soft mode is gapped by any finite lon-
gitudinal field, it is important to investigate its effect both
theoretically and experimentally. In our cuboidal crystal, the
multiple domain structure actually makes the longitudinal
field more homogeneous than it would be if there was a
global demagnetization field coming from a single domain.
This helps with the theoretical interpretation of the data.
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In this section, we first make some theoretical observations,
and then look at the experiments using two different field
ramping protocols.

A. Theoretical remarks

We start by considering the effect of an inhomogeneous
longitudinal field on the soft mode. We assume a longitudinal
field component Bz(r) of the total field B(r), varying with
position r around the sample, and we introduce a “density of
states” function Nz(ξ ) for the longitudinal fields as a function
of longitudinal bias ξ , defined as

Nz(ξ ) =
∫

Vo

d3r δ[ξ − Bz(r)], (23)

where we integrate over the entire volume Vo of the sample.
The number of spins which have a local longitudinal field in
the range ξ < Bz < ξ + dξ is then Nz(ξ )dξ .

It is useful to write Nz(ξ ) as

Nz(ξ ) =
∫

dBz|∇rBz(r)|−1δ(ξ − Bz ). (24)

We then can imagine surfaces �ξ (r) of constant ξ in the
sample, defined by the δ function in Eq. (24). Their shape,
and the way they move through a single-domain sample as we
change ξ , is governed by Morse theory, and the basic ideas
are similar to those used to discuss the density of states of
phonons in solids. Hence we expect Morse and van Hove
singularities as the surfaces pass in or out of the single-domain
sample at specific values ξ j , and an interesting structure for
Nz(ξ ) that will depend on sample shape [48–52].

The gradient function ∇rBz(r) is along a direction n̂ξ (r)
perpendicular to the surface �ξ (r), and Nz(ξ ) will increase
as |∇rBz(r)| decreases, diverging when |∇rBz(r)| → 0. Any
discontinuity in the area of the surface as a function of ξ will
lead to a discontinuity in Nz(ξ ); this happens when surfaces
leave or enter the sample.

In thinking about this intuitively two tactics are useful. One
is to look at solvable examples. For example, it is easy to work
out the field distribution around a single-domain cylinder, and
to plot the surfaces of constant ξ .

The plots of surfaces of constant ξ give a second useful
way of thinking about the physics. In any sample, the field
varies in different parts of the sample because of inhomo-
geneous demagnetization fields; this is particularly true for
any single-domain sample if its shape is far from ellipsoidal.
If we now vary a constant applied longitudinal field B0

z to
the sample, the surface ξ = 0 defines a set of points where
the internal demagnetization field exactly cancels the external
field, leaving net zero field. On this surface (which moves
around in the sample as we vary Bz) the soft-mode frequency
will be identically zero. However, any departure from this
surface will gap the soft mode.

The effect of a spatially varying field in the sample, and
hence of a spatially varying Bz(r), is to then cause the energies
of the collective modes in the sample to vary with position,
insofar as their frequencies depend on Bz. This dependence
is acute in the case of the zero mode in the LiHoF4 system,
in the region around the critical surface ξ = 0, because the

soft-mode frequency has a singular dependence on Bz around
Bz = 0 (see below).

Suppose we ignore the linewidth of the zero mode, and
assume that it has a frequency ωo(Bz, B⊥). We then can write
the line shape of the zero mode, as seen in the experiments, as

S(�) =
∫

dξ

∫
Vo

d3r δ[ξ − Bz(r)] δ[� − ωo(ξ, B⊥)]

=
∫

dBz Nz(Bz ) δ[� − ωo(Bz, B⊥)]. (25)

To proceed further we need a form for ωo(Bz, B⊥). We posit
an analytic form that fits the numerical results for ωo(Bz, B⊥);
these results were given in our earlier work [3], and we find
that a good fit in the limit of low soft-mode energy is provided
as follows.

First we define

x6 = α[B⊥ − Bmin
⊥ (Bz )],

y6 = γ Bz,

z = x + iy, (26)

where α, γ are constants, and Bmin
⊥ (Bz ) is the transverse field

for which the zero-mode energy is a minimum for a given
longitudinal field Bz. If one looks at the numerical plots, one
sees that Bmin

⊥ (Bz ) ∼ O(Bz )1/2.
We now write a model form for the zero-mode frequency

as

ωo(z, z̄) = (α1/3|B⊥ − Bmin
⊥ (Bz )|1/3 + γ 1/3|Bz|1/3)

= zz̄. (27)

We note that the minimum value of ωo when the trans-
verse field B⊥ = Bmin

⊥ (Bz ) is ∝ B1/2
z . When Bz = 0, one has

Bmin
⊥ (0) = B⊥

c , the field at the quantum critical point.
If we now write the zero-mode line shape S(�, Bz, B⊥) as

S(�) =
∫

dωo

(
dωo

dξ

)−1

Nz(ωo) δ(� − ωo), (28)

we find that

S(�) = 3

γ

∫
dωo Nz(ωo) δ(� − ωo)

× (ωo − α1/3|B⊥ − Bmin
⊥ (Bz )|)2 (29)

with a quadratic dependence on the frequency ωo. We see that
this spectral weight picks up a very small contribution from
the region where ωo is small, i.e., the critical region where
B⊥ ∼ Hc and where Bz ∼ 0. This is a real problem in principle
for experiments because it is precisely the region where ωo is
small that is of greatest interest.

To see what happens analytically, suppose that we have a
density-of-states function that is flat and can be written as

Nz(ξ ) = 1

B2 − B1
[θ (B2 − ξ ) − θ (B1 − ξ )] (30)

so that we then have

S(�) = 3

γ (B2 − B1)

∫ ωo(B2 )

ωo(B1 )
dωo δ(� − ωo)

× (ωo − α1/3|B⊥ − Bmin
⊥ (Bz )|)2. (31)
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The quadratic dependence on ωo in the integrand now strongly
emphasizes the regions of the sample where |ωo| is large, i.e.,
in the wings where |Bz| is the largest of |B2| or |B1|. The region
where ωo is small is hardly captured at all.

It is thus clear that to see the soft mode in the region
where it really goes soft, we require a very small spread in
longitudinal fields in the sample. More detailed numerical fits
of ωo(Bz, B⊥), which are accurate outside the very low-energy
regime, indicate that we need to have a spread �Bz in longitu-
dinal fields which is less than ∼200 Oe in order to see the soft
mode. As discussed previously [3], this appears to be the case
in our samples precisely because we have multiple domains,
which then smooth the field Bz(r) around the sample.

A more detailed analysis would use, instead of (27) for the
zero-mode frequency ωo, a form for the dynamic susceptibil-
ity χ (�,ωo; ξ, B⊥) of the zero mode; and we would use the
correct distribution function Nz(ξ ) for the longitudinal fields
in the sample, computed for what we believe is the correct
domain structure in the sample. The resulting line shape pre-
dicted for the experiments would then be

S(�, B⊥) = −
∫

dξ

π
Nz(ξ ) Imχ (�,ωo; ξ, B⊥). (32)

A more thorough investigation of this question requires
characterization of the actual field distribution in the sample.
Nonetheless, the fact that the existence of multiple domains
in the sample smooths the demagnetization field [3] helps
enormously in seeing a relatively sharply defined mode in the
experiments (see also discussion in Sec. VIII below).

B. Experimental results

We now look at what is actually seen. Applying a dc
magnetic field along the Ising axis provides insight into mag-
netic domain formation and the relationship of ferromagnetic
domains to collective mode dynamics. Due to the potentially
hysteretic nature of the ferromagnet, two distinct field ramp-
ing protocols were investigated. First, as depicted in the right
column of Fig. 12, the direction of the field vector is fixed and
the amplitude ramped continuously from 0 to 6 T. Multiple
overlapping peaks in the dissipation are observed [dashed
curves in Fig. 12(c)]. In order to classify these peaks, we plot
their dependence on field angle in Fig. 12(e). The response of
the low-energy soft mode is qualitatively different to that of
the quantum phase transition, allowing the two features to be
separated. As expected, the QPT (identified by the minimum
in f0, corresponding to the peak in the static susceptibility)
depends only weakly on the longitudinal field, whereas the
enhanced dissipation associated with the soft mode has a
strong and approximately quadratic dependence on applied
field [Fig. 12(e)]. This dependence is seen for the mode both
above and below the quantum critical point.

A second field-sweeping protocol was followed (right col-
umn of Fig. 12) to control for ferromagnetic domain effects.
In this protocol, we start at high transverse field, sufficient to
place the sample well inside the quantum paramagnetic phase.
A longitudinal pinning field of 70 mT is applied, and the trans-
verse field is ramped down to the desired value immediately
below the critical field, thereby driving the sample into the
ferromagnetic state. The response of the LiHoF4 sample is

then measured as a function of longitudinal field as that field
is ramped through zero to the maximum accessible negative
field for our coil set. This process is repeated for a series of
transverse fields, defining a grid in (Hl , Ht ) parameter space.
Cutting through the grid at a series of constant longitudinal
fields yields the curves shown in Fig. 12(d), where we now
see the phase transition and the soft-mode feature in the fer-
romagnetic state, but the initial pinning field has suppressed
the soft-mode feature previously visible in the paramagnetic
phase. As shown in Fig. 12(e), the features defining the phase
transition and the soft mode respond to longitudinal field in
qualitatively different fashions. The transverse-field location
of the phase transition only depends weakly on the longitudi-
nal field. However, the presence of a longitudinal field does
suppress the magnitude of the peak in the dissipation. By
contrast, the location of the soft-mode dissipative peak moves
significantly as a function of longitudinal field. It is asymmet-
ric about zero, indicating that hysteresis due to ferromagnetic
domains plays a significant role in setting the field scale for
the mode.

VIII. DOMAIN STRUCTURE AND WALKER MODES

Previous measurements have examined the domain struc-
ture in LiHoF4 in the classical regime by means of optical
measurements [53,54] and scanning Hall probe microscopy
[55]. Stripe domains form oriented along the Ising axis, with
characteristic lateral scale of 2 μm [54]. As the results re-
ported here entailed using a cuboidal sample, we also must
consider the nonuniform demagnetizing field distribution.
This aspect of the physics has been discussed previously in
the context of LiHoF4 [56–58]. The demagnetizing fields act
to broaden the observed spin resonances, and in an applied
ac field they are responsible for the spatially inhomogeneous
Walker modes discussed below.

Up to this point, our calculations of the dynamic suscep-
tibility have assumed uniform or negligible demagnetization
fields in a sample where the magnetization is uniform locally.
This assumption includes uniformly magnetized ellipsoids,
and spins within a particular domain (away from the domain
walls) of an arbitrarily shaped sample where neighboring
domains eliminate the local demagnetization field. Modes
present in such a system, known as Kittel modes [59], contain
uniformly precessing spin excitations. In the presence of a
spatially nonuniform ac field and/or nonuniform magnetiza-
tion or demagnetization fields in the sample (due to domains,
the sample shape, etc.), modes which have a spatially varying
phase within the sample can be excited. These are known
as magnetostatic or Walker modes, after the description by
Walker [60]. The term “magnetostatic” is a misnomer given
that these are intrinsically dynamic phenomena; the term
refers to the fact that the amplitude of the time-dependent
field and magnetization fluctuations are assumed to obey the
classical magnetostatic equations.

In the measurement, Walker modes are visible for a wide
range of transverse fields, as shown in Fig. 10. While such
modes in general can be excited by inhomogeneities in either
the rf field [60] or the magnetization and demagnetization
field fluctuations, here the high homogeneity of the rf field
provided by the loop-gap resonator design [29] suggests that
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FIG. 12. Effects of longitudinal dc field. (a) Fixed-angle protocol: fields along the transverse and longitudinal directions are ramped
together ratiometrically. (b) Field-cooling protocol: starting in the paramagnet, a longitudinal pinning field is applied, the transverse field
is decreased to the measurement field, and data taken as a function of longitudinal field. (c) Response to the fixed-angle protocol. The center
frequency (top) shows the shift in the quantum phase transition cusp as the field angle is changed. The absorption (1/Q) (bottom) of the
low-energy mode diminishes for larger field angles. Zero degrees denotes a field purely in the transverse direction with respect to the crystal.
Dashed lines show the three fitted peaks for the 0.17◦ trace. (d) Response to the field-cooling protocol, showing a large peak in the dissipation
at the quantum phase transition and a smaller satellite peak due to the low-energy mode crossing the 1.9-GHz measurement frequency.
(e) Field-angle dependence of the low-energy mode for transverse fields above and below the quantum phase transition, along with the angle
dependence of the phase transition itself. Curves are guides to the eye. (f) Loci of the phase transition and low-energy mode in (Hl , HT ) space.
For both field protocols, the low-energy mode exhibits qualitatively different behavior than the phase transition, revealing the influence of a dc
longitudinal field and the onset of history dependence due to ferromagnetic domain formation.

it is the latter inhomogeneity which is principally responsible
for enabling the Walker mode behavior.

Several factors are at play in the analysis of such modes in
this system, including the coupling between the electronic and
nuclear magnetizations, and the domain structure. To account
for the domain structure, we consider a sample composed of
equal and opposite magnetic stripes in the xz plane, with the
magnetization M = (mx, 0,±mz ). To account for the coupled
electronuclear modes, we consider the equations of motion of
the set of electronic and nuclear spin operators {X i} = {τ i, Ii},
as in Eqs. (5) and (6).

The effect of stripe domains has been examined in the
context of other magnets [61–64]. The magnetization on
the top surface of the sample is σm = mzsgn[cos (πy/d )],

where d is the width of the stripes. We expand the surface
magnetization in a Fourier cosine series so that the magneti-
zation is symmetric about y = 0 with the first domain wall
occurring at y = ±d/2. Following Kooy and Enz [63], we
solve for the magnetostatic potential inside and outside the
sample. The resulting demagnetization field inside the sample
is given by

Hz
D(y, z) = −

∑
n′

4mz

nπ
e− πnLz

2d cos

(
πny

d

)
cosh

(
πnz

d

)
,

Hy
D(y, z) = −

∑
n′

4mz

nπ
e− πnLz

2d sin

(
πny

d

)
sinh

(
πnz

d

)
, (33)
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where n′ = {n : n > 0, n odd}. We assume a sample with
a finite length Lz that extends to infinity in the transverse
directions. Note that in a system comprised of many stripe
domains, for which Lz/d � 1, the demagnetization field
is suppressed exponentially. The width of the domains fol-
lows from minimization of the magnetostatic free energy of
the system, taking into account the energy of the domain
walls. This solution of the magnetostatic equations neglects
the crystal-field anisotropy present in LiHoF4. In order to
account for anisotropy, we must make contact between the
microscopic spin Hamiltonian given in Eq. (2), and the macro-
scopic field and magnetization given by the magnetostatic
equations.

The demagnetization fields given in Eq. (33) are a solution
to the magnetostatic equations ∇ × H = 0 and ∇ · H = −∇ ·
M. To make contact with the microscopic spin Hamiltonian,
we consider the local field acting on each holmium ion, given
by Hloc = Ha + Hdip + Hex + Hhyp, where we consider an ex-
ternally applied field Ha, a field due to the dipolar interactions
Hdip, the exchange field Hex, and the hyperfine field due to the
nuclear spins Hhyp. We analyze each term in this expression
below.

The local moment at each lattice site is the sum of the
electronic and nuclear moments of each holmium ion, M =
me + mn = ρsγJ〈Ji〉 + ρsγI〈Ii〉, where ρs is the spin density
and. respectively, γJ〈Ji〉 and γI〈Ii〉 are the electronic and
nuclear moments at site i. In LiHoF4 there are four spins
per unit cell with volume Vcell = a2c, where the transverse
lattice spacing is a = 5.175 Å, and the longitudinal lattice
spacing is c = 10.75 Å. This gives a spin density of ρs =
4/Vcell = 1.3894 × 1028 m−3. The nuclear moment is small
(|γI/γJ |  1), so that the magnetization at each lattice site
is M ≈ me = −ρsgμB〈Ji〉, where g = 5

4 is the Landé g factor,
and μB is the Bohr magneton. Although the nuclear contribu-
tion to the magnetization is small, one must consider both the
electronic and nuclear spin contributions to the magnetization
dynamics; this is due to the strong hyperfine coupling present
in LiHoF4.

The substantial hyperfine coupling in LiHoF4 leads to a
strong hyperfine field acting on the electronic spins. In the
equation of motion, when the electronic and nuclear spins are
decoupled in the RPA, this leads to a strong local nuclear field
acting on each electronic spin. This approximation is prob-
lematic near the quantum critical point of the system, where
electronuclear correlations become important. The Green’s
function approach to calculating the electronuclear modes
avoids this difficulty. Away from the critical point, where elec-
tronuclear correlations are less important, one may perform an
RPA decoupling of the electronic and nuclear spins. Given the
slow dynamics of the nuclear spins, the hyperfine field is then
an additional static field acting on the electronic spins.

The dipolar and exchange fields stem from the interac-
tion in Eq. (2), V zz

i j = JDDzz
i j − Jnn. The antiferromagnetic

exchange field is Hz
ex = λexMz, with λex = −2.73 × 10−2 (see

the supplement of Ref. [3]). The zero wave-vector component
of the dipole sum is

Dzz
0 = ρs

[
4π

3
+ λdip − 4πNz

]
, (34)

where λdip = 1.664 is the lattice correction and Nz is the de-
magnetization factor. In general, the local dipolar field acting
on the spins is [65]

Hdip = 1

4π

[
4π

3
M + H�

]
+ HD, (35)

where the terms in square brackets are the Lorentz local
field and a lattice correction, and the final term is the de-
magnetization field. In LiHoF4, we assume that the crystal
field quenches all but the longitudinal component of the
dipolar field. The lattice correction is then Hz

� = λdipMz. In
a uniformly magnetized ellipsoid Hz

D = −NzMz, where Nz

is the demagnetization factor. To account for the domain
structure, we introduce an effective demagnetization factor
so that Hz

D = −Neff
z mz, with mz being the magnitude of the

local magnetization inside a particular domain [3] (for fur-
ther details of demagnetization fields in cuboidal samples see
[57]). In the absence of an applied field the domain struc-
ture arranges itself so the demagnetization field is zero and
Neff

z ≈ 0. This validates the use of a needle-shaped sample in
calculations.

The demagnetization field due to a stripe domain pattern,
given in (33), contains a y component which is quenched by
the crystal field in LiHoF4, assuming the surface spins are
subject to the same crystal field as the bulk spins. In the exper-
iment, with a static field applied in the x direction, there will
be magnetic surface charge on the yz surfaces of the sample.
The resulting demagnetization fields are also assumed to be
quenched or vanish due to the crystal symmetry. We leave
corrections to these approximations, and the demagnetization
fields resulting from the corners and edges of the sample, as
subjects for future work.

The applied field, exchange field, hyperfine field, and the
component of the dipolar field given in square brackets in
Eq. (35) are homogeneous over short length scales so that
their curl and divergence are zero. The magnetostatic equa-
tions are then ∇ × HD = 0 and ∇ · HD = −∇ · M, where the
demagnetization field and the magnetization of the sample
may be inhomogeneous. This connects the microscopic spin
Hamiltonian with the magnetization and field determined by
Maxwell’s equations. We return now to the LiHoF4 system in
an applied ac field, and determine the Walker modes present
in the system.

Consider a ferromagnetic phase of the system, in which
the stripe domain pattern is present. In the experiment, the
uniform ac field leads to a uniform magnetic fluctuation across
the cuboidal sample. The resulting nonuniform demagneti-
zation field fluctuation stirs up a Walker mode. The zero
wave-vector component of this Walker mode excitation shows
up in the experiment [58]. In order to calculate the average
demagnetization field within a stripe in a multidomain sample,
one may average the demagnetization field present in a single
stripe of the stripe domain phase,

H
z
D = 1

Lzd

∫ d/2

−d/2

∫ Lz/2

−Lz/2
Hz

D dzdy = −Neff
z mz, (36)

with

Neff
z = 8d

Lz

∑
n′

sin (πn/2)

(nπ )3

[
1 − exp

(
− πnLz

d

)]
,
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where the summation is over odd positive values of n. We
obtain an alternating series with terms that decay like 1/r3, as
one would expect if the terms correspond to demagnetization
corrections from neighboring stripe domains at an increasing
distance from the stripe of interest. In a system comprised of
many stripes, where Lz/d � 1, one finds Neff

z ≈ 0. The di-
mensions of the LiHoF4 sample are Vsample = Lx × Ly × Lz =
1.8 mm × 2.5 mm × 2.0 mm, and we expect the system to
form micron scale domains [54], so that Lz/d ∼ 103. The lon-
gitudinal magnetization is mz = −ρsgμBCzz〈τ z〉, with 〈Jz〉 =
Czz〈τ z〉 being the truncated longitudinal spin operator. In zero
transverse field, the truncation parameter is Czz = 5.51, which
leads to a magnetization given by μ0mz = −1.115〈τ z〉 T.
From Eq. (36) one finds the average demagnetization field
within a stripe in a multidomain sample to be at most μ0H

z
D ∼

10〈τ z〉 mT, and from Eq. (33) we expect this field to be
concentrated near the sample surface decaying exponentially
as one moves into the bulk.

We look at the temperature dependence of the two types of
modes to further separate out the domain dynamics manifest-
ing as Walker modes from the soft mode and other excitations
driven by the single-ion energy hierarchy of the sample. As
shown in Fig. 13, the avoided level crossings associated with
the Walker modes are clearly visible at 55 mK, but have
essentially vanished by 500 mK. Conversely, transitions to
the higher electronuclear modes persist to 1 K and above
(Fig. 9).

IX. CONCLUSIONS

The pure LiHoF4 ferromagnet features experimentally ac-
cessible electronic and nuclear spin degrees of freedom in
a theoretically tractable package, with the further dimension
of controllable disorder provided by the ability to substitute
magnetic Ho ions with nonmagnetic Y. In this paper we have
explored what may be the most striking aspect of the onset of
long-range magnetic order: the quantum critical point that is
posited to exist for a quantum Ising magnet in a strong trans-
verse field. We have developed the theory of mode softening
at the quantum critical point, showing that a cancellation of
infrared divergences yields a weak but observable physical
signature of the soft mode. Starting from the microscopic
Hamiltonian for LiHoF4, we derived a theory of magnon-
photon hybridization that allows for direct comparison to the
measured microwave spectra. We then combined these two
thrusts to show an experimental observation of the soft mode
at the quantum critical point.

At first glance, there is no obvious reason why there should
be a simple quantum critical point in LiHoF4, simply because
the delocalized electronic magnons couple via strong hyper-
fine interactions to a large set of localized nuclear excitations.
Previous experimental and theoretical work on systems of this
kind [38,52,66] suggested that the nuclear spins should act
to destructively scatter any coherent spin waves. However, as
first shown [17] in 2018, the actual picture when the hyperfine
couplings are strong should be one in which the nuclear spins
hybridize with the electronic spins to form a set of delocalized
electronuclear modes. These electronuclear modes include a
single mode which softens around the quantum critical point,

FIG. 13. Temperature evolution of Walker modes, measured with
a resonator tuned to 3.2 GHz at zero magnetic field. (a)–(c) As the
temperature increases from 55 to 500 mK, the avoided level cross-
ings characteristic of the Walker modes weaken and vanish, while
the behavior driven by the electronuclear mode structure remains
robust. (d) Constant-frequency cuts (shown by the dashed lines in
the upper three panels) exhibit the temperature evolution. The cuts
evolve from a clear multipeak structure to a single peak due to the
net magnetization of the sample with no additional features. (e) 1/Q
vs HT for three temperatures, showing the thermal suppression of the
Walker mode features.

along with a large number of gapped modes, as shown in
Fig. 1.

In the real world of LiHoF4, things are more complicated
than this simple picture. The electronuclear soft mode couples
to two other sets of soft modes, viz., photons and phonons,
which are both gapless. This coupling severely changes some
of the physics, particularly if the coupling is strong. The
resulting spectrum is not at all obvious. Remarkably, the elec-
tronuclear soft mode survives, but one finds theoretically that
the intensity of this mode will be weak as energy goes to zero
because of an infrared cancellation mechanism, reminiscent
of the physics that characterizes the Kondo problem.
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This is not the only reason that observation of the soft
mode is difficult. Another is its extraordinary sensitivity to
any finite longitudinal field, which very rapidly gaps the soft
mode; and any inhomogeneity in the longitudinal fields will
then smear out the soft mode completely, rendering it invisi-
ble. As discussed above, in any single-domain nonellipsoidal
sample, where the longitudinal fields vary across the sample,
one expects this to happen. The only reason we do see the
mode is because the multiple domains smooth the field at the
length scale of the soft-mode wavelength.

For these reasons, and others, the experimental observation
of the hybridized photon-electronuclear magnon modes be-
came a real challenge, with the first observation reported only
a few years ago [3]. This then raises the inevitable question of
what is still left to understand and explore, and what further
surprises may be waiting. We should like to emphasize the
following questions:

(i) Disorder and impurities. Defects and impurities are
known to have a profound effect on quantum phase transitions
[67–69]. What happens to the electronuclear modes, particu-
larly the soft mode, on substitution of a small fraction of the
Ho ions by Y (or some other species)?

(ii) Effect of longitudinal fields. It would be of con-
siderable interest to further explore the profound effect of
longitudinal fields on the soft electronuclear mode. The results
will depend very sensitively on the domain structure in the
sample and on sample shape as well as the field-sweeping
protocol.

(iii) Infrared divergences. A full clarification of the role
of IR divergences coming from photons interacting strongly
with many-body systems in cavities is, in our view, still out-
standing. Away from the quantum critical point the problem is
more tractable, but in the present case we are dealing with the
interplay between two different soft modes, each with its own
IR peculiarities. In the real world we also have to deal with
soft long-wavelength acoustic phonons, which enter the fray
as one approaches the quantum critical point.

(iv) Implications for quantum information processing. One
of the reasons for the enduring interest in quantum critical
phenomena in the LiHoF4 system is the link to adiabatic
quantum computation [70]. It is well known that the coupling
of the system to a “spin bath” of two-level systems must
strongly affect the slow sweep dynamics through the critical
point [71,72]. However, the role of the soft mode has yet to
be understood. In particular, how does the electronuclear soft
mode interact with the two-level systems, and how does this
affect the transition through the critical point? One can ask the
same about any spin impurities in the system, which brings us
back to the questions posed in (i) above.
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FIG. 14. In (a) we show the three-point vertex �(p, q) for
electron-photon scattering, which in (b) is shown in the low-energy
IR regime, where it factorizes as given in Eqs. (A1) and (A2). In (c),
we depict a contribution to the scattering of an electron by an external
potential, in which vertex corrections to photon emission occur; these
cancel the divergences shown in (a).

APPENDIX A: SOFT PHOTONS IN VACUUM QED

Naive calculations in QED immediately give IR divergent
cross sections, with an infinite number of emitted soft photons
[73,74]. This is an apparent failure of perturbation theory; the
IR limit describes classical processes like bremsstrahlung, in
which an electron scatters off some potential, and which have
a well-behaved low-energy cross section. Thus, one immedi-
ately has a contradiction between naive theory and the real
world.

1. The “soft factor”

The paradox can be resolved in various ways. Consider, as
a simple example, the scattering process in Fig. 14(a), where
an electron with 4-momentum p emits a soft photon with 4-
momentum q. Then the “factorization theorem” [75,76] states
that in the IR limit, as q → 0, this process is described by a
scattering amplitude �3(p, q). To leading order, this has the
form

�3(p, q) → K2(p)S(q), (A1)

in which K2(p) is the usual electron propagator (fully renor-
malized), and where S(q) is the “soft factor” having the
behavior

S(q) ∼ S0(q) + S1(q) + O(|q|). (A2)

In this equation, S0(q) ∼ O(1/|q|) is the “leading term” (in
the sense of an asymptotic series), and it is divergent in the
q → 0 limit. The next term S1(q) ∼ O(1) is the “subleading
term”; after this one has “sub-subleading terms,” which we do
not discuss here.

There is a divergence as q → 0, and the question is how
to cure it. The divergence arises from the infinite number of
soft photons that are emitted when the electron is subject to
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any acceleration (e.g., from an interaction with some heavy
body which acts as an external potential). If, however, we
wish to calculate the scattering cross section of the elec-
tron off this body, we must include vertex corrections to the
scattering of the electron, as shown in Fig. 14(c), if we are
to get a consistent result. One then finds a cancellation in
the cross section for scattering, to leading order, between
the divergences associated with photon emission in S0(q), and
the divergences in the vertex corrections [77,78]. In this way
one can recover classical brehmsstrahlung.

One also can recover these results, as well as the form for
�3(p, q), using an eikonal treatment [79,80], which is more
elegant in that it is already a nonperturbative approach. More
modern treatments of these IR phenomena begin from fully
dressed coherent states for the electron [81–83]. Physically
this makes sense because one can never undress the photons
from the electron. For an electron in an infinite flat vacuum,
one also can relate the form of S(q) to asymptotic symmetries
of QED [84,85].

Moving from the leading divergent term to �3(p, q) (or
any other process involving electrons and soft photons) to the
contribution of subleading terms [86–89] introduces compli-
cations. These subleading terms have been analyzed in various
ways: as a manifestation of “large” gauge transformations [87]
or of the boundary terms in a path integral for the scattering
amplitude [89,90]. We emphasize here that, even now, there is
no general agreement as to how the subleading terms should
be understood, and how they may enter into physical results;
we return to this point below.

2. Influence functional

Another perspective, which is more directly connected to
experiment, is to look directly at the dynamics of the reduced
density matrix ρ(x, x′) for the electron [91]. In abbreviated
notation [92], where, e.g., we write ρ(1, 1′) ≡ 〈1|ρ|1′〉, the
equation of motion for this density matrix ρ can be written in
the form

ρ(2, 2′) =
∫

d1 d1′ K (2, 2′; 1, 1′) ρ(1, 1′), (A3)

where the propagator K (2, 2′; 1, 1′) for ρ has the path-integral
form [92]

K (2, 2′; 1, 1′) =
∫ j2

j1

D j
∫ j′2

j′1

D j′ei(S0[ j]−S0[ j′])/h̄ F[ j, j′],

(A4)

in which S0[ j] is the bare action for the electron (i.e., without
the coupling to the EM photon field), written in terms of the
electron 4-current jμ(x), and where F[ j, j′] is the influence
functional, describing the way in in which the functional inte-
gration over photons weights different 4-current paths { j, j′}
for the density matrix propagator.

For QED in a vacuum at finite temperature T , this influence
functional has the form

F[ j, j′] = ei(�[ j, j′]+i	[ j, j′])/h̄, (A5)

where the imaginary part of the phase of the influence func-
tional, known as the “decoherence functional,” is of particular

interest here. It has the form [46]

	[ j, j′] = e2

2

∫
d3q

(2π )3

1

2ω
Pμν (q) δ jμ(q)δ jν (q) coth

h̄βω

2
,

(A6)

where δ jμ = jμ(q) − j′μ(q) and Pμν = δi j − qiq j/|q|2 (for
i, j = 1, 2, 3) and P0ν (q) = Pμ0(q) = 0.

In studying the contribution of soft photons to the deco-
herence functional one begins by separating jμ(q) into “hard”
(large-q) and “soft” (small-q) parts. At the level of the leading
divergent terms, the correct way to dress the jμsoft (q) is well
understood, and is summarized in the soft factor S0(q) in
Eqs. (A1) and (A2).

However, just as found when analyzing the soft factor,
the way to handle the subleading term S1(q) is less clear.
Elsewhere, we have argued [90] that it is not necessary to dress
jsoft
μ (q) with subleading terms. However, it would appear that

the only way to determine whether it should be dressed or not
is by doing experiments; there is as yet no obvious theoretical
criterion we can use to decide.

In principle one can do experiments on electronic deco-
herence rates. In Ref. [90] we discuss two such experiments;
it is noteworthy that in both cases (a 2-slit experiment, and
an optomechanical experiment), one requires a theory of the
interaction of the electron with the surrounding solid me-
dia. Thus, any theory of the sub-leading contributions to
electronic decoherence already requires that we go beyond
vacuum QED, and consider objects like cavities (each slit
on the 2-slit experiment constitutes a kind of cavity for the
electron [90]). It seems that in the discussion of the IR prop-
erties of vacuum QED, we are inevitably led to consider
cavity QED.

APPENDIX B: THE ROLE OF SOFT PHONONS

As with photons, one can attempt to treat this problem
in a conserving approximation, and many of the arguments
go through as for the case of electronuclear interactions with
photons. Thus, the structure of the diagrams for the dynam-
ics susceptibility is the same as that shown in Figs. 5 and
6, with the photon lines replaced by phonon lines. One can
even repeat the usual arguments which lead to the possibility
of superradiance, this time mediated by phonons rather than
photons.

However, again one is faced with the fact that the RPA
conserving approximation does not capture all of the lead-
ing IR contributions to the three-point spin-phonon vertex,
or to the phonon-mediated spin-spin interactions. Analo-
gous arguments to those used for photons indicate that
vertex corrections will lead to extra sources of dissipa-
tion around the critical point in describing the soft-mode
propagator.

We are thus confronted with a situation in which two
separate gapless bosonic fields couple simultaneously to the
electronuclear soft mode. This is a formidable problem. The
two IR contributions will not act independently of each other
and there will be interference between the two, which will
become pronounced at the approach to the quantum critical
point. Even a simple model calculation is a challenging task,
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and we will not attempt it here, but reserve discussion to
another paper. Note that there are multiple phonon branches

in the LiHoF4 system [47], and the electronuclear soft mode
will couple to all of them.
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