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Theory of magnon polaritons in quantum Ising materials
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We present a theory of magnon polaritons in quantum Ising materials, and develop a formalism describing the
coupling between light and matter in an Ising system that is tuned through its quantum critical point. The theory
is applied to Ising materials having multilevel single-site Hamiltonians, in which multiple magnon modes are
present, such as the insulating Ising magnet LiHoF4. We find that the magnon-photon coupling strengths may
be tuned by the applied transverse field, with the coupling between the soft mode present in the quantum Ising
material and a photonic resonator mode diverging at the quantum critical point of the material. A fixed system of
spins will not exhibit the diamagnetic response expected when light is coupled to mobile spins or atoms. Without
the diamagnetic response, one expects a divergent magnon-photon coupling strength to lead to a superradiant
quantum phase transition. However, this neglects the effects of damping and decoherence present in any real
system. We show that damping and decoherence may block the superradiant quantum phase transition, and lead
to weak coupling between the soft magnon mode and the resonator mode. The results of the theory are applied
to experimental data on the model system LiHoF4 in a microwave resonator.
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I. INTRODUCTION

Although light-matter interactions were central to the de-
velopment of quantum field theory, it is only recently that
the interactions between microwave photons and magnetic
materials have been explored in detail. Indeed, it was in 2009
that Imamoğlu pointed out that strong coupling is achieved
between resonant cavity photons and a spin ensemble in a cou-
pled spin-photon system [1]. A short time later, interactions
between a nanomagnet and microwave photons in a spherical
resonator were investigated by Soykal and Flatté [2,3]. Since
2010, developments in microwave resonator technology have
pushed forward our ability to explore fundamental aspects of
quantum physics [4], and have led to the rapid development
of a new field of quantum magnonics and associated hybrid
quantum technologies [5–7].

In this paper, we develop a general, finite-temperature,
quantum field theory that may be used to study light-matter
interactions, including interactions between a quantum system
and an oscillator bath environment [8–13]. The formalism is
applicable to materials having strong Ising interactions be-
tween their constituent atoms, or spins, and materials with
complicated, multilevel, single-site Hamiltonians, such as the
quantum Ising magnet LiHoF4 [14–16], which undergoes a
ferromagnetic to paramagnetic quantum phase transition in an
applied transverse field.

*Corresponding author: ryanmck.van@gmail.com

We analyze the transverse-field Ising model (TFIM) in the
presence of an applied ac magnetic field along the easy axis
of the material:

H = HTFIM + Bz cos (ωt )
∑

i

Jz
i , (1)

HTFIM = −1

2

∑
i �= j

Vi jJ
z
i Jz

j − Bx

∑
i

Jx
i . (2)

This simple model of a quantum material in a microwave
resonator can be quantized to obtain a quantum optics model
in which the spins couple to an effective photon momentum
operator [p ∼ i(a† − a)]:

H = HTFIM − iα(a† − a)
1√
N

∑
i

Jz
i . (3)

The magnetic insulating crystal LiHoF4 is often considered
an archetypal quantum Ising material, albeit with a strong
hyperfine interaction between each holmium spin and its nu-
cleus, and with the dominant coupling between spins being
long-range dipolar interactions [14]. The results of our theory
are applied to LiHoF4, and they accommodate the low-energy
electronuclear modes present in the material. The coupling
between light and matter depends on the atomic density of
the matter. We note that the spin density of LiHoF4 is more
than three times that of YIG, which has been a primary focus
of quantum magnonics.

Coupled light and matter modes will hybridize, forming
polariton modes. The theory of polaritons, named as such,
stemmed from Hopfield’s work [9], although earlier work
on coupled light-matter modes is present in the literature
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[17,18]. The quantum optics model, given by Eq. (3) shares
similarities with the Hopfield model [9], as well as the Dicke
model [8], and quantum environment models such as the
Caldeira-Leggett and spin boson Hamiltonians [12,13] (see
Appendix A for more details). A primary difference between
the model given by Eq. (3) and the models introduced by
Dicke and Hopfield is that in Eq. (3) we are considering a
fixed system of spins, and no diamagnetic term is present
in the Hamiltonian. A system comprised by mobile spins or
atoms, as in the Dicke and Hopfield models, will exhibit a dia-
magnetic response. As discussed below, the diamagnetic term
in light-matter Hamiltonians has important consequences, so
Eq. (3) should be considered a distinct model.

The diamagnetic term has been the source of consider-
able controversy. In the absence of the diamagnetic term, as
one increases the light-matter coupling strength, a superradi-
ant quantum phase transition is expected to occur, in which
photons spontaneously appear in the ground state of the sys-
tem [19,20]. The presence of the diamagnetic term forestalls
this transition [21]. Furthermore, with the diamagnetic term
present, it was shown by De Liberato that as one increases the
light-matter coupling, the light and matter modes will in fact
decouple [10]. The source of this light-matter decoupling is
the diamagnetic response which localizes the photon modes
away from the matter, and shifts the resonant frequency of the
light mode. As the coupling strength is increased, one finds
the polaritonic modes have a predominately light or matter
character.

The spin-photon Hamiltonian given in Eq. (3) leads to an
effective magnon-photon Hamiltonian in which the diamag-
netic term is absent. As the quantum Ising material is tuned
through its critical point, the spectral weight of the soft mode,
and hence the magnon- photon coupling strength, diverges.
As no diamagnetic term is present, this ought to lead to a
superradiant quantum phase transition. However, we show
that including the effects of dissipation and decoherence of
the magnon modes leads to a very different outcome. When
environmental degrees of freedom are taken into account, the
resulting dissipation and decoherence couple to the diver-
gence of the soft mode, providing a new means to prevent
superradiance. We substantiate this theoretical prediction in
experiments on a model quantum Ising magnet.

The remainder of this paper is structured as follows: To
begin, in Sec. II, we provide a brief discussion of the magnon-
polariton propagator and the resonator transmission function.
This provides a primary connection between theoretical work
and experimental results. The magnon-polariton theory is then
developed in Sec. III. Starting with Eqs. (1) and (2), we derive
the magnon-polariton propagator for the coupled light-matter
system, and an effective bosonic Hamiltonian describing the
system. The calculation is lengthy, so we begin Sec. III with a
detailed summary of the steps involved.

Having obtained the magnon-polariton propagator, we dis-
cuss its application to calculating mode energies and spectral
weights in Sec. IV, first in the absence of damping and then
with frequency-independent (ohmic) damping of the magnon
modes. This concludes the theoretical portion of this paper.

In Sec. V, we compare the theory with experimental data
on LiHoF4 in a microwave resonator [4,22]. An ansatz is
used to account for decoherence of the spins comprising

the collective magnon modes. With dissipation and deco-
herence accounted for, we are able to make quantitative
comparisons between results of this model and experimental
measurements.

II. RESONATOR PHYSICS

In a resonator experiment, one measures transmission of
photons through the resonator, which is determined theo-
retically by the magnon-polariton propagator. Our quantum
optics model is analyzed making use of the imaginary time-
ordered magnon-polariton propagator of the coupled system
[23]:

Dmp(τ ) = 〈Tτ [a†(τ ) + a(τ )](a† + a)〉, (4)

where 〈Tτ · · · 〉 is an imaginary time-ordered thermal average
taken over the light and matter degrees of freedom. The results
of this theory are applied to the quantum Ising magnet LiHoF4

in a microwave resonator.
In a two-port microwave resonator experiment, one may

measure transmission of photons through the resonator. The
resonator transmission function is given by [24,25]

S21 = xout
2

xin
1

∣∣∣∣
xin

2 =0

, (5)

where xin/out
1,2 is a measure of the incoming and outgoing light

at the resonator ports 1 and 2. The transmission function is
the ratio of the outgoing photons at port 2 to the incoming
photons at port 1 when no light is incident at port 2. We
assume the resonator transmission function is related to the
magnon-polariton propagator by [26]

|S21(ω)|2 ∝ Im
[
Dret

mp(ω)
]
, (6)

where the proportionality constant depends on details of
the resonator. The retarded magnon-polariton propagator
Dret

mp(ω), or photon response function, is defined by Dret
mp(ω) =

βDmp(iωn → ω + i0+), with

Dmp(iωn) = 1

β

∫ β

0
dτ eiωnτ Dmp(τ ), (7)

where ωn = 2πn/β are Bose-Matsubara frequencies [23].
The imaginary component of Dret

mp(ω) corresponds to the en-
ergy absorbed by the resonator photons. The transmission data
vary over many orders of magnitude, and will be presented on
a logarithmic scale:

10 log10 |S21|2 = 10 log10

(
AIm
[
Dret

mp

])
. (8)

The proportionality constant A can be adjusted so that the
scale of the experimental data matches that of the theoretical
results. In what follows we set A = 1, leaving a more quanti-
tative comparison of the experimental resonator transmission
and the theoretical results as a subject for future work.

The magnon-polariton propagator is defined in terms of
photon position operators, x ∼ a† + a, whereas in Eq. (3) the
spins couple to a photon momentum operator p ∼ i(a† − a).
One can show that a canonical transformation that swaps the
photon position and momentum operators leads to an equiva-
lent formulation of the model in which the spins couple to an
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effective position operator [27] (see Appendix B):

H = HTFIM − α(a† + a)
1√
N

∑
i

Jz
i . (9)

This canonical transformation facilitates the calculation of the
magnon-polariton propagator for the interacting spin-photon
system.

The cooperativity of a light-matter system is defined by
C ≡ 4g2

m/(�m�r ), where �r and �m are the linewidths (or
dampings) of the light and matter modes, respectively [28].
In this expression, the coupling, g2

m = α2Am, is between a
magnon mode and a light mode, where α is the spin-photon
coupling given in Eq. (9), and Am is the spectral weight of
the relevant magnon mode. This expression for the magnon-
photon coupling is derived in Sec. III E. When the coupling
strength exceeds the damping of the system (C > 1), the
modes are said to be strongly coupled, and there will be
coherent energy oscillations between the matter and the light.
Regardless of whether or not the modes are strongly cou-
pled, the use of perturbation theory and the rotating-wave
approximation (RWA) requires η = g/ω << 1. If η > 0.1 the
system is said to be in the ultrastrong-coupling regime, and if
η > 1 the system is in the deep-strong-coupling regime [29].
Somewhat confusingly, a system in the ultrastrong- or deep-
strong-coupling regime may be weakly coupled if C < 1.

We have provided a brief description of the magnon-
polariton propagator, the resonator transmission function, and
a discussion of the cooperativity of a light-matter system.
We will make use of this material in the development of the
magnon-polariton theory, and the comparison between the
theory and experimental results for LiHoF4 in a microwave
resonator. In the next section, we provide a detailed derivation
of the magnon-polariton propagator beginning with the basic
model given by Eqs. (1) and (2).

III. MAGNON-POLARITON THEORY

Our goal in this section is a detailed derivation of the
magnon-polariton propagator, beginning with the basic spin
model given by Eqs. (1) and (2). Prior to delving into the
calculation, we provide a brief summary of the required steps,
and the terms which appear as the theory develops.

In Sec. III A, we quantize the longitudinal ac magnetic field
present in our basic model, assuming a plane-wave basis for
the photons, and we divide the spin Hamiltonian into its mean-
field (MF) part and interactions between fluctuations about the
MF. The photon part of the resulting spin-photon Hamiltonian
contains a term describing the instantaneous Zeeman energy
of the spins in the ac field. The spin-photon interaction is given
by an effective photon momentum operator [p ∼ i(a† − a)]
coupled to fluctuations of the spins about their MF. A canon-
ical transformation is used to swap the photon momentum
operator for a photon position operator in the interaction. A
phenomenological filling factor is introduced to account for
the coupling between spins and photons in a resonator where
the plane-wave assumption may break down.

In Sec. III B, we discuss the dynamic susceptibility of a
quantum Ising system having a multilevel single-site Hamilto-
nian. The dynamic susceptibility is discussed in both the MF
approximation and the random-phase approximation (RPA).

To go beyond the RPA, phenomenological damping param-
eters are introduced to account for damping of the magnon
modes due to interactions between magnetic fluctuations,
phonons, or any other environmental degrees of freedom.
The dynamic susceptibility is central to the calculation of the
magnon-polariton propagator.

In Sec. III C, we return to the spin-photon Hamiltonian
derived in Sec. III A. An auxiliary field is introduced to ac-
count for the interactions between magnetic fluctuations in the
spin component of the Hamiltonian. A shift in the auxiliary
field allows a trace to be performed over the microscopic spin
degrees of freedom, resulting in an effective field theory which
describes photons coupled to collective spin excitations, or
magnons, present in the quantum Ising material. An expres-
sion for the propagator of the free auxiliary field is developed.
The shift in the auxiliary field leads to a diamagnetic term in
the photon component of the Hamiltonian, HD

γ = D(a† + a)2,
which shifts the frequency of the resonator mode. Although
this diamagnetic term is present in an intermediate stage of
the development of the theory, we find that the free auxiliary
field propagator contains a term which restores the photon
frequency to its original value in the final expression for the
magnon-polariton propagator, given in Sec. III E, so the dia-
magnetic response term arising from the shift in the auxiliary
field plays no role in the final theory.

In Sec. III D, we consider the photon component of
the magnon-photon Hamiltonian and derive the free pho-
ton propagator. Finally, in Sec. III E, we consider the full
magnon-photon Hamiltonian and derive the magnon-polariton
propagator for the coupled light-matter system in terms of
the dynamic susceptibility of the quantum Ising material.
The spectral representation of the dynamic susceptibility is
used to derive an equivalent bosonic Hamiltonian for the
light-matter system. This completes the derivation of the
magnon-polariton propagator.

A. Spin-photon Hamiltonian

We consider the TFIM in a longitudinal ac field, H =
Hγ + HTFIM + Hint, where Hγ is the photon Hamiltonian, the
TFIM Hamiltonian is given in (1), and the interaction between
the spins and the magnetic field is

Hint = Bz cos(ωt )
∑

i

Jz
i . (10)

The TFIM may be treated in MF theory, HTFIM = HMF +
Hfl, where the MF Hamiltonian is

HMF = EGS − Hz

∑
i

Jz
i − Bx

∑
i

Jx
i , (11)

with Hz = V0〈Jz〉MF, where the zero-wave vector component
of the interaction between spins is V0 =∑ j Vi j . The constant
contribution to the ground-state energy, EGS = V0〈Jz〉2

MF/2,
will be dropped from the subsequent analysis. The MF spin
polarization 〈Jz〉MF is determined self-consistently from the
MF Hamiltonian [30,31]. The energy of the interactions be-
tween fluctuations in the longitudinal MF spin polarization are
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given by

Hfl = −1

2

∑
i �= j

Vi jδJz
i δJz

j , (12)

where the fluctuation operator is defined by δJz
i = Jz

i −
〈Jz〉MF.

We consider a single electromagnetic-field mode, in which
case

Hγ = h̄ωr

(
a†a + 1

2

)
. (13)

Assuming the magnetic field is generated by a plane wave, the
quantized ac magnetic field in a volume Vres may be written

Bz cos(ωt ) → B̂z = −i
gLμB

c

√
h̄ωr

2Vresε0
(a† − a), (14)

where, on the right-hand side, the time dependence is implicit
in the photon operators and the amplitude of the field depends
on the photon density. The Landé g factor and Bohr magneton
written explicitly in the quantized expression were previously
included in the definition of Bz. We assume photons with a
wavelength much larger than the sample size so that eiq·r ≈ 1,
with ωr = qc.

Transforming the spin operators to momentum space

Jz
k = 1√

N

∑
i

eik·ri Jz
i , (15)

we find that the interaction is Hint = −iα(a† − a)δJz
0, with

α = gLμB

√
μ0 h̄ωrN

2Vres
. (16)

The interaction is between spin fluctuations and an effective
momentum operator, p ∼ i(a† − a). In Appendix B we show
that a canonical transformation that swaps the photon position
and momentum operators leads to an equivalent formulation
of the problem in which

Hint = −α(a† + a)δJz
0 . (17)

We have dropped a term linear in the photon operators from
the interaction, B̂zN〈Jz〉0 = −α(a† + a)

√
N〈Jz〉0. This is the

(instantaneous) MF Zeeman energy of the spins in the longitu-
dinal ac magnetic field. We will reintroduce this term as part of
the photon Hamiltonian in Sec. III D. In a system with n atoms
per unit cell, the total number of atoms is N = nVsample/Vcell.
The interaction strength may then be written

α = η
√

2π
√

h̄ωr

√
ρJD with JD = μ0(gLμB)2

4π
, (18)

where in our plane-wave approximation the filling factor is
η = √Vsample/Vres, and the spin density is ρ = n/Vcell. In YIG
we have ρ = 4.22 × 1027 m−3, whereas in LiHoF4 the value
is ρ = 1.39 × 1028 m−3, which is about 3.3 times the value in
YIG. The dipolar energy scale of the LiHoF4 system is given
by ρJD = 13.52 mK. For a discussion of the magnon-photon
coupling strength in YIG, see Refs. [28,32].

Our result for the filling factor was based on a plane-wave
assumption. In a realistic model of a microwave resonator
[2,3], the plane-wave assumption may break down, and the

filling factor will depend on details of the resonator. One may
express the filling factor as [28,32]

η =

√√√√ (∫Vsample
B(r) · ẑ dr

)2
Vsample

∫
Vres

[B(r)]2 dr
, (19)

where B(r) is the magnitude of the ac resonator field. In this
paper, we will treat the filling factor as a phenomenological
parameter. The results of our theory are applied to experimen-
tal data on LiHoF4 in a loop gap microwave resonator [33].

B. Dynamic susceptibility

The dynamic susceptibility of a quantum Ising material is
central to the development of the magnon-polariton theory.
We will make frequent use of the dynamic susceptibility and
its spectral decomposition. We proceed to review the dynamic
susceptibility in both the MF approximation and the RPA. For
a more detailed discussion of the dynamic susceptibility of
magnetic materials, see Ref. [34].

The MF Hamiltonian for each spin, and the matrix ele-
ments of the longitudinal spin operator, may be expressed
in terms of eigenstates and energies of the single-site MF
Hamiltonian given by Eq. (11):

HMFi =
∑

m

Em|m〉〈m| and cmn = 〈m|Jz|n〉MF, (20)

where {Em} are the single-site energy levels of the system, and
{|m〉} are the associated eigenstates. We drop the constant shift
in the ground-state energy, EGS, from subsequent analysis.

The modes of the spin system, and their associated spectral
weights, follow from the connected imaginary time correla-
tion function, or Green function, g(τ ) = −〈Tτ δJz(τ )δJz〉MF,
where Tτ is the imaginary time ordering operator. In MF the-
ory, transforming the Green function to Matsubara frequency
space (ωn = 2πn/β), we may write the MF Green function as
[34,35]

g(iωn) = 1

β

∫ β

0
eiωnτ g(τ )dτ = g̃(iωn) − gelδiωn,0, (21)

where in the final expression the Green function is divided into
an inelastic component, and the quasielastic diffusive pole of
the system. The longitudinal MF dynamic susceptibility and
the Green function are related by χ0(ω) = −βg(iωr → ω +
i0+) = χ̃0(ω) + χ0

elδω,0. In terms of the MF energy levels and
matrix elements of the longitudinal spin operator, one may
write the dynamic susceptibility as

χ̃0(z) =
∑
n>m

|cmn|2 pmn
2Enm

E2
nm − z2

,

βχ0
el =
∑

m

c2
mm pm −

[∑
m

cmm pm

]2

. (22)

The pmn = pm − pn are differences between population fac-
tors pm = e−βEm/ZMF, where ZMF = Tr[e−βHMFi ]. The poles
of χ̃0(z), Enm = En − Em, are the MF modes of the system,
and their spectral weights are amn = |cmn|2 pmn. The elastic
contribution to the dynamic susceptibility, χ0

el, vanishes in
the paramagnetic phase of the system (cmm = 0), and decays
exponentially with temperature (χ0

el ∼ Te(−E1/T ) ).
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In the RPA, the result for the dynamic susceptibility is
χ (k, z) = χ0(z)/[1 − Vkχ0(z)]. One may solve for the poles
of this function, and their residues, in order to obtain its
spectral representation:

χ (k, z) =
∑

m

[
Am

k 2Em
k(

Em
k

)2 − z2

]
+ χ el

k δz,0, (23)

where Am
k is the spectral weight of the mth RPA mode Em

k .
In the magnon-polariton theory, the wavelengths of the mi-

crowave photons are much larger than the size of the sample,
so we are interested in the k = 0 limit of the dynamic sus-
ceptibility. In this limit we write χ (z) = χ (k = 0, z), and we
define {ωm} = {Em

k=0}, and {Am} = {Am
k=0}, as the zero-wave

vector component of the magnon modes and their spectral
weights. The spectral weights of the magnon modes are in-
versely proportional to the mode frequencies, Am ∼ 1/ωm (see
Appendix C), with the spectral weight of the soft mode diverg-
ing at the critical point of the system.

The RPA expression for the dynamic susceptibility ne-
glects any damping of the magnon modes. In reality, the
modes are damped by interactions between the magnetic
fluctuations, and environmental degrees of freedom such as
phonons, and extraneous photons inside a resonator. If the
modes are assumed to behave as damped harmonic oscillators,

the dynamic susceptibility may be written (χel = 0)

χ (ω) =
∑

m

Am2ωm

ω2
m − ω2 − iω�m

. (24)

We have analytically continued to real frequencies z → ω +
i0+, and introduced the phenomenological damping parame-
ters {�m}. As will be shown, the magnon-polariton propagator
may be written in the same way. In terms of its reactive and
absorptive parts (χ = χ ′ + iχ ′′), the dynamic susceptibility is

χ ′(ω) =
∑

m

Am2ωm
(
ω2

m − ω2
)(

ω2
m − ω2

)2 + (ω�m)2
+ (�0/2)2χel

ω2 + (�0/2)2
(25)

and

χ ′′(ω) =
∑

m

Am2ωmω�m(
ω2

m − ω2
)2 + (ω�m)2

+ ω�0/2χel

ω2 + (�0/2)2
, (26)

where we have included the contribution from χel to illustrate
its role in the theory.

The damping parameter will downshift the resonant fre-
quency of the mode, ωm → ω̃m = √ω2

m − (�m/2)2, and if the
damping exceeds the mode energy, �m/2 > ωm, the mode
becomes overdamped. The shift in the mode energy may be
eliminated by introducing a counterterm to the theory. This
is accomplished by setting z = ω + i�m/2 for each mode in
Eq. (23). The dynamic susceptibility is then

χ ′(ω) =
∑

m

[
Am(ω + ωm)

(ω + ωm)2 + (�m/2)2
− Am(ω − ωm)

(ω − ωm)2 + (�m/2)2

]
+ χel(�0/2)2

ω2 + (�0/2)2
, (27)

and

χ ′′(ω) =
∑

m

[
Am�m/2

(ω − ωm)2 + (�m/2)2
− Am�m/2

(ω + ωm)2 + (�m/2)2

]
+ χelω�0/2

ω2 + (�0/2)2
. (28)

With the counterterm present, the effect of the damping is
to broaden the delta function peaks associated with absorp-
tion and emission by the magnon modes into Lorentzians.
Damping also broadens the quasielastic diffusive pole into
an additional peak in the absorption spectrum, albeit with a
different line shape. The elastic contribution to the dynamic
susceptibility vanishes in the paramagnetic phase of the sys-
tem, and decays exponentially with temperature. In the time
domain, the Lorentzian function describes exponentially de-
caying oscillations at a fixed frequency, rather than the strictly
exponential decay of excitations seen in an overdamped har-
monic oscillator.

We make use of the spectral representation of the dy-
namic susceptibility to calculate the magnon-photon coupling
strengths in the magnon-polariton theory.

C. Auxiliary field theory

To derive the magnon-photon Hamiltonian, we make use
of the partition function as a means to renormalize the system.
The interactions between spins are decoupled via the introduc-
tion of an auxiliary Hubbard-Stratonovich field, which allows
us to average out the microscopic spin degrees of freedom.

The resulting theory describes photons coupled to the collec-
tive spin excitations, or magnons, present in the material.

We divide the total Hamiltonian of the spin-photon system
into two terms H = H0 + H′, where H′ contains the spin
fluctuations

H′ = −1

2

∑
i �= j

Vi jδJz
i δJz

j − α(a† + a)
1√
N

∑
i

δJz
i (29)

and H0 = HMF + Hγ . The photon Hamiltonian contains a
contribution from the instantaneous Zeeman energy of the
spins in the ac field as discussed following Eq. (17).

The partition function, written in the Matsubara formalism,
is given by [23]

Z = ZH0

〈
Tτ exp

[
−
∫

τ

βH′(τ )

]〉
0

, (30)

where
∫
τ

≡ ∫ β

0 dτ/β. The interactions between spin fluctua-
tions may be decoupled via the introduction of an auxiliary

043716-5



R. D. MCKENZIE et al. PHYSICAL REVIEW A 106, 043716 (2022)

Hubbard-Stratonovich field [16]:

Z

ZH0

=
∫

Dφ exp

(
− 1

2

∫
τ

∑
k

|φk(τ )|2
)

×
〈
Tτ exp

(∫
τ

V (τ )

)〉
0

, (31)

where the integration measure is Dφ = dφk/
√

2π , and (sup-
pressing the τ dependence)

V =
∑

k

[φ−k

√
βVk + βα[a† + a]δk,0]δJz

k . (32)

We proceed by shifting the auxiliary field so that the de-
pendence of the interaction on the photons is in the Gaussian
prefactor:

φ0 → φ0 − βα(a† + a)√
βV0

. (33)

Multiplying out the result for the zero-wave vector component
of the Gaussian prefactor, the partition function is

Z

ZH0

=
〈〈

Tτ

∫
Dφ exp

(∫
τ

αφφ0(a† + a)

)
× exp

(
− 1

2

∫
τ

∑
k

|φk|2
)

× exp

(∫
τ

Vs

)〉
s

〉
γ

,

(34)

where the dimensionless coupling between the photon oper-
ators and the magnetic fluctuations is αφ = βα/

√
βV0. The

interaction between the shifted auxiliary field and the spin
fluctuations is

Vs(τ ) =
∑

k

φ−k(τ )
√

βVk δJz
k (τ ). (35)

The thermal average over the eigenstates of H0 has been
written in terms of separate averages over the spin and photon
eigenstates, 〈· · · 〉0 = 〈〈· · · 〉s〉γ . This is possible because in H0

the Hilbert spaces for the spins and the photons are disjoint.
The square of the shifted auxiliary field contains a term inde-
pendent of the field, HD

γ = D(a† + a)2 with D = α2
φ/(2β ) =

α2/(2V0), which has been shifted into the photon part of H0.
We are now in a position to trace over the spin degrees of

freedom. This has been dealt with in detail elsewhere [16];
here we simply quote the result for the partition function in
the random-phase approximation:

Z

ZH0 Zφ

=
〈〈

Tτ exp

(
αφ

∫
τ

φ0(a† + a)

)〉
φ

〉
γ

(36)

where 〈· · · 〉φ is an average taken with respect to the free
auxiliary field.

Transforming to Matsubara frequency space

φ(iωn) =
∫

τ

eiωnτ φ(τ ), (37)

the partition function of the free auxiliary field is

Zφ =
∫

Dφ exp

(
− 1

2

∑
n,k

[
D0

φ (k, iωn)
]−1|φk(iωn)|2

)
,

(38)

where the free field propagator, D0
φ (k, iωn) = 〈|φk(iωn)|2〉φ ,

is

D0
φ (k, iωn) = 1

1 − Vkχ0(iωn)
= 1 + Vkχ (k, iωn). (39)

One may make use of the spectral decomposition of the
dynamic susceptibility [Eq. (23)] to determine the spectral
representation of the free field propagator.

Beginning with a microscopic spin-photon Hamiltonian,
we have developed an effective theory describing photons
interacting with an auxiliary field which represents the collec-
tive magnetic excitations, or magnons, present in the system.
We now turn to the photon component of the Hamiltonian,
and make use of harmonic oscillator position and momentum
operators to develop a path-integral representation of the pho-
tonic degrees of freedom.

D. Photon Hamiltonian

Considering a single-photon mode, the photon Hamilto-
nian is given by

Hγ = ωr
(
a†a + 1

2

)− λ(a† + a) + D(a† + a)2, (40)

where

λ = α
√

N〈Jz〉0 and D = α2
φ

2β
= α2

2V0
. (41)

As discussed following Eq. (16), the term linear in the photon
operators is the instantaneous mean-field Zeeman energy of
the spins in the applied ac field, only now we are considering
spins coupled to an effective photon position operator. The
source of the diamagnetic term is the shift in the auxiliary
field given in Eq. (33). Although the diamagnetic term is
present in this intermediate stage of the development of the
magnon-polariton theory, we find it does not play a role in the
final expression for the magnon-polariton propagator given in
Sec. III E.

We proceed by representing the photons with classical
harmonic oscillator variables:

x =
√

h̄

2mω
(a† + a), p = i

√
h̄mω

2
(a† − a). (42)

In terms of these operators we have (h̄, m = 1)

Hγ = p2

2
+ 1

2
ω2

r x2 −
√

2ωrλx + 2Dωrx2. (43)

The diamagnetic term shifts the oscillator frequency. In terms
of the shifted variables

ωγ = ωr

√
1 + 4D

ωr
and λγ = λ

[
1 + 4D

ωr

]− 1
4

, (44)

the photon Hamiltonian is

Hγ = p2

2
+ 1

2
ω2

γ x2 −√2ωγ λγ x. (45)

The term linear in the position operator re-zeros the oscillator,
and leads to a shift in its ground-state energy:

Hγ = p2

2
+ 1

2
ω2

γ (x − x0)2 − 1

2
ω2

γ x2
0, (46)
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where x0 = √2ωγ λγ /ω2
γ . This linear shift of the oscillator

will not affect the photon propagator. In terms of photonic
quasiparticle operators which create and annihilate photons
with energy ωγ , the photon Hamiltonian may be written

Hγ = ωγ

(
a†

γ aγ + 1

2

)
− 1

2
ω2

γ x2
0 . (47)

The shift in the ground-state energy may be included with the
ground-state energy of the spins EGS [see the discussion fol-
lowing Eq. (11)], and dropped from subsequent consideration.

In imaginary time, the propagator of the shifted photon
modes is

Dγ (τ ) = 〈Tτ [a†
γ (τ ) + aγ (τ )](a†

γ + aγ )〉γ , (48)

where the average 〈· · · 〉γ is taken with respect to Hγ . One
may express the partition function of the photon system in
terms of a path integral over the harmonic oscillator position
operator [36]:

Zγ = Tr[e−βHγ ] =
∫

Dx exp

[
−
∫ β

0
Lγ [ẋ, x]dτ

]
, (49)

where H = L in imaginary time, and the path integral is over
the shifted harmonic oscillator variables. In the field theory,
it is convenient to work with the dimensionless operator xγ =
a†

γ + aγ . In Matsubara frequency space, the Euclidean action
in terms of the dimensionless operator xγ is given by∫ β

0
Lγ (τ )dτ = 1

2

β

2ωγ

∑
n

[− (iωn)2 + ω2
γ

]|xγ (iωn)|2.
(50)

It follows that the photon propagator is given by

Dγ (iωn) = 2ωγ

β

1

ω2
γ − (iωn)2

. (51)

We now have the free propagators of the magnon and
photon systems, D0

φ (k, iωn) and Dγ (iωn). Equipped with
these propagators, we may proceed to calculate the magnon-
polariton propagator for the coupled magnon-photon system.

E. Magnon-polariton propagator

We have developed a path-integral representation of the
partition function for a quantum Ising system in a resonator.
We return now to the partition function of the full system,
given by Eq. (36). The noninteracting component of the par-
tition function may be rewritten as ZH0 = ZMFZγ , where ZMF

yields the mean-field free energy of the spins, and Zγ yields
the free energy of the free photons. Although the MF free en-
ergy of the spins has important thermodynamic consequences,
it has no bearing on the magnon-polariton propagator and may
be dropped from subsequent analysis.

We define the magnon-polariton partition function by

Zmp

Zγ Zφ

=
〈〈

Tτ exp

(
αφ

∫
τ

φ0(a† + a)

)〉
φ

〉
γ

. (52)

We wish to determine the magnon-polariton propagator of the
rescaled photon operators (xγ = a†

γ + aγ ),

Dγ
mp(τ ) = 〈Tτ [a†

γ (τ ) + aγ (τ )](a†
γ + aγ )〉mp, (53)

but in order to do so, we must reexpress the interaction in
terms of the photon operators aγ . In terms of the dimension-
less operator xγ = a†

γ + aγ , we find that

αφ

∫
τ

φ0(a† + a) = βαγ

∑
n

φ(iωn)xγ (−iωn) (54)

where

αγ = αφ

β

[
1 + 4D

ωr

]− 1
4

. (55)

Note that if Dmp is the propagator for the original photonic
operators, x = a† + a, which create and annihilate photons
with frequency ωr , we have Dγ

mp = (ωγ /ωr )Dmp.
In order to calculate the magnon-polariton propagator, one

may expand the interaction in (52) and sum the resulting
Dyson series. The exact result for the magnon-polariton prop-
agator is

Dγ
mp(iωn) = 1

D−1
γ (iωn) − β2α2

γDφ (iωn)
. (56)

Recall that the free field propagator may be written in terms of
the dynamic susceptibility as D0

φ (iωn) = 1 + V0χ (iωn), where
χ (iωn) is the zero-wave vector component of the RPA suscep-
tibility given by Eq. (23). This leads to

Dγ
mp(iωn) = −2ωγ

β

[
1

(iωn)2 − ω2
c + (α2

c

/
β
)
χ (iωn)

]
, (57)

where the effective frequency of the resonator and the effec-
tive coupling strength are now

ω2
c = ω2

γ − 2βα2
γ ωγ and α2

c = 2β2α2
γ ωγV0. (58)

The resonant frequency of the resonator is shifted by the
diamagnetic response of the photons ωr → ωγ [Eq. (44)]. The
coupling between the photons and the auxiliary field again
shifts the resonator frequency ωγ → ωc. A short calculation
shows that ωc = ωr , so the resonant photon frequency of the
system is unchanged. This is as one might expect because the
original spin-photon Hamiltonian does not contain a diamag-
netic term.

In terms of the original parameters of the spin-photon
Hamiltonian, one may show that the rescaled coupling is
α2

c /β = α22ωr . Using the fact that Dmp = (ωr/ωγ )Dγ
mp, we

arrive at the magnon-polariton propagator of the original res-
onator photons (x = a† + a):

Dmp(z) = −2ωr

β

[
1

z2 − ω2
r + α22ωrχ (z)

]
. (59)

This propagator is a central result of the magnon-polariton
theory. As discussed in Sec. II, it provides a primary con-
nection between theoretical work and the experimentally
measured resonator transmission function. Our result for
the propagator includes the effects of counter-rotating terms
which become important in the ultrastrong- or deep-strong-
coupling regime [29].

043716-7



R. D. MCKENZIE et al. PHYSICAL REVIEW A 106, 043716 (2022)

The dynamic susceptibility is given in Eq. (23). With
χel = 0, one may write an effective bosonic magnon-photon
Hamiltonian describing the system:

Hmp = ωra†a +
∑

m

ωmb†
mbm

+ (a† + a)
∑

m

gm(b†
m + bm). (60)

In the absence of damping, the magnon-polariton propagator
for the theory is given by (see Appendix D)

DH
mp(iωn) = −2ωr

β

⎡⎣ 1

(iωn)2 − ω2
r −∑m

4g2
mωmωr

(iωn )2−ω2
m

⎤⎦. (61)

Comparing with Eq. (59), we see that the coupling in the
effective bosonic theory is

g2
m = α2Am. (62)

The propagator then satisfies DH
mp(a†, a) = Dmp(a†, a). Recall

that the spectral weights of the magnon modes scale like Am ∼
1/ωm, so that the couplings will also scale like the inverse of
the mode energies. The magnon mode energies, ωm, and the
coupling strength, gm, are temperature dependent due to the
temperature dependence of the MF, and the population factors
which determine Am.

One sees that the effective bosonic magnon-photon Hamil-
tonian captures the propagator of the original resonator
photons coupled to the quantum Ising spins, apart from the
contribution from the quasielastic diffusive pole. Therefore,
when χel = 0, we are free to use the bosonic theory to describe
the magnon-photon system. Note that there is no diamagnetic
term in the effective bosonic Hamiltonian. In the Dicke model,
one is dealing with mobile charged particles, and the diamag-
netic term comes from squaring the canonical momentum of
the charge carriers. As we are dealing with a fixed system of
spins, no such term is expected.

In the development of the auxiliary field theory, we treated
the magnetic fluctuations in the quantum Ising system in the
RPA, and determined the exact magnon-polariton propagator
within this approximation. In the RWA, counter-rotating terms
in the effective bosonic Hamiltonian are dropped, leading to
an approximate result for the magnon-polariton propagator
[26] [assuming χel = 0, and with Dret

mp(ω) = βDmp(z → ω +
i0+)]:

Dret
mp(ω) = 1

ω − ω−
mp + i�−

mp/2

− 1

ω + ω+
mp + i�+

mp/2
, (63)

where

ω−
mp(ω) = ωr +

∑
m

g2
m(ω − ωm)

(ω − ωm)2 + (�m/2)2
,

ω+
mp(ω) = ωr −

∑
m

g2
m(ω + ωm)

(ω + ωm)2 + (�m/2)2
, (64)

and

�−
mp(ω)

2
= �r

2
+
∑

m

g2
m�m/2

(ω − ωm)2 + (�m/2)2
,

�+
mp(ω)

2
= �r

2
+
∑

m

g2
m�m/2

(ω + ωm)2 + (�m/2)2
. (65)

A phenomenological damping parameter �r has been in-
cluded to account for any intrinsic damping of the resonator
photons. As a coherent quantum Ising system is tuned through
its critical point, the spectral weight of the soft mode diverges,
as will the coupling of the soft mode to the resonator photons.
When gm � |ωr − ωm|, one expects the RWA to break down,
and it is necessary to make use of the full RPA magnon-
polariton propagator to calculate resonator transmission.

IV. DISCUSSION OF RESULTS

We have developed an effective field theory, and an equiva-
lent bosonic Hamiltonian, describing a quantum Ising system
in a microwave resonator. The theory has been used to cal-
culate the magnon-polariton propagator of the light-matter
system.

In the Dicke and Hopfield models (see Appendix A), the
diamagnetic response of a light-matter system goes like the
square of the coupling strength, D ∼ α2, and the coupling
strength varies like the square root of the atom or spin density,
α ∼ ρ

1
2 , as in Eqs. (18) and (41). With the diamagnetic term

present, the effective resonator frequency diverges with the
spin density (see Appendix D). This forestalls the superradiant
quantum phase transition [21], and leads to light-matter de-
coupling [10]. The situation here is different. Importantly, the
effective Hamiltonian describing the magnon-photon system
[Eq. (60)] does not contain a diamagnetic term. The magnon-
photon coupling strength depends on the spectral weight of
the relevant magnon mode [see Eq. (62)], and may be tuned
by the applied transverse field independently of the resonator
frequency.

Consider a system with a single magnon mode. In the ab-
sence of damping, the upper and lower polariton modes follow
from the poles of the magnon-polariton propagator [Eq. (61)]:

ω2
± = ω2

r + ω2
m

2
±
√(

ω2
r − ω2

m

2

)2

+ 4g2
mωrωm. (66)

As the system is tuned through a quantum critical point, the
spectral weight of the soft mode will diverge, as will the
coupling g2

m ∼ Am ∼ 1/ωm → ∞. At the degeneracy point,
ωr = ωm, there ought to be an avoided level crossing in the
magnon-polariton spectrum

ω± = ωr

√
1 ± 2gm/ωr if ωm = ωr, (67)

or possibly a superradiant quantum phase transition if gm >√
ωmωr/2. Recall from the discussion following Eq. (62) that

gm and Am are temperature dependent, so the condition for su-
perradiance is valid at finite temperatures. We have neglected
dissipation and decoherence of the soft mode. The divergent
spectral weight of the soft mode will lead to strong coupling
to the resonator photons; it will also lead to strong coupling
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with bath degrees of freedom such as extraneous photons and
phonons.

Prior to a discussion of the damped magnon-polariton sys-
tem, we provide a brief analysis of the propagator in the
random-phase approximation, and in mean-field theory. In
the random-phase approximation, we capture the coupling
between photons and collective spin excitations in the system.
At the mean-field level, we capture single-ion excitations.

A. Mean-field theory

In order to calculate the magnon-polariton propagator in
the random-phase approximation, an auxiliary field was intro-
duced to account for the magnetic fluctuations. The resulting
theory accounts for spins coupled to collective excitations in
the material. In order to capture excitations at individual sites,
a mean-field theory is more appropriate. One may calculate
the magnon-polariton propagator in MF theory without intro-
ducing the auxiliary field.

Our starting point for the MF calculation is Eq. (30), where
H′ is now

H′ = −α(a† + a)
1√
N

∑
i

δJz
i . (68)

We have dropped the interactions between the fluctuations of
the spins about their MF. The photon Hamiltonian is given by

Hγ = ωr

(
a†a + 1

2

)
− λ(a† + a). (69)

At the MF level, there is no diamagnetic term in the photon
Hamiltonian. The diamagnetic term came from a shift in the
auxiliary field in the RPA theory.

One may introduce harmonic oscillator variables, as in
Sec. III D, to obtain an effective action for the photons. The
result is the same as in Eq. (50), with ωγ replaced with the
resonator frequency ωr . Recall that the shift in the photon fre-
quencies (ωr → ωγ ) came from the diamagnetic term in the
photon Hamiltonian, which is not present in the MF theory.

The resulting MF magnon-polariton partition function is
(recall

∫
τ

≡ ∫ β

0 dτ/β)

ZMF
mp

Zγ

=
〈〈

Tτ exp

(
βα

∫
τ

xδJz
0

)〉
s

〉
γ

, (70)

where x = a† + a, and δJz
0 is the zero-wave vector component

of the electronic spin operators. One may perform a cumu-
lant expansion and trace over the microscopic spin degrees
of freedom [16]. The average over the spins 〈· · · 〉s is taken
with respect to the MF spin Hamiltonian. We have dropped
ZMF from ZMF

mp because the MF partition function of the spins
plays no further role in determining the magnon-polariton
propagator.

Truncating the result of the cumulant expansion at the RPA
(or Gaussian) level, one finds

ZMF
mp

Zγ

=
〈

exp

(
βα2

2

∑
n

χ0(iωn)|x(iωn)|2
)〉

γ

, (71)

and the resulting MF magnon-polariton propagator is

DMF
mp (z) = −2ωr

β

[
1

z2 − ω2
r + α22ωrχ0(z)

]
. (72)

This result may have easily been anticipated from Eq. (59).
Writing the RPA susceptibility as a Born series we have

χ = χ0 + χ0V0χ0 + χ0V0χ0V0χ0 + · · · . (73)

Truncating the series after the first term leads to the MF result
involving light scattering from individual ions. Summing the
full series leads to the RPA result which describes light cou-
pled to collective modes of the system. We have derived the
MF result here to demonstrate the use of the magnon-polariton
theory at the MF level, where the introduction of the auxiliary
field is unnecessary.

Using the spectral decomposition of the MF propagator,
which follows from Eq. (22), and neglecting the quasielastic
diffusive pole, one may write the propagator as

DMF
mp (z) = −2ωr

β

⎡⎣ 1

z2 − ω2
r −∑n>m

4g2
mnEnmωr

z2−E2
nm

⎤⎦. (74)

The coupling strength is g2
mn = α2amn, where amn = |cmn|2 pmn

is the spectral weight of the MF transition between states n
and m.

In a resonator experiment, one expects both single-ion
excitations and collective modes. The eigenstates of the col-
lective modes may involve quantum coherent superpositions
of many different single-ion eigenstates. As the system is sub-
ject to decoherence, the collective-mode behavior may give
way to single-ion excitations. As will be demonstrated for the
LiHoF4 system, the relative strengths of the single-ion exci-
tations and the collective modes can be compared by tuning
their respective spectral weights.

B. Random-phase approximation

In the absence of damping, we obtain the magnon-polariton
propagator in the random-phase approximation. A spectral
decomposition of the magnon-polariton propagator may be
obtained making use of Eq. (61), which we write as

βDmp(z)|RPA = − P(z)

Q(z)
, (75)

where

P(z) = 2ωr

∏
m

(
z2 − ω2

m

)
, (76)

and

Q(z) = (z2 − ω2
r )
∏

m

(
z2 − ω2

m

)
−
∑

m

4g2
mωmωr

∏
m′ �=m

(
z2 − ω2

m′
)
. (77)

The magnon-polariton modes {ωp} follow from the zeros of
Q(z), which we may rewrite as Q(z) =∏p(z2 − ω2

p). The
spectral decomposition of the propagator is then

βDmp(z)|RPA =
∑

p

Ap2ωp

ω2
p − z2

, (78)
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with

Ap = ωr
∏

m

(
ω2

p − ω2
m

)
ωp
∏

q �=p

(
ω2

p − ω2
q

) . (79)

We see that the magnon-polariton spectral weights scale like
the inverse of the mode energy, Ap ∼ 1/ωp. This RPA ex-
pression will be used to calculate the modes of LiHoF4 in a
microwave resonator.

C. Damped magnon-polariton propagator

We have developed a theory of magnon polaritons in quan-
tum Ising systems, and discussed the resulting propagator in
the random-phase approximation and in mean-field theory. We
find that the magnon-photon coupling strength depends on the
spectral weight of the relevant magnon mode. As a system is
tuned through its quantum critical point, the divergent spectral
weight of the soft mode leads to deep strong coupling between
the soft mode and the resonator photons. As no diamagnetic
term is present in the theory, one expects this to lead to a
superradiant quantum phase transition. However, this neglects
the effects of damping and decoherence due to the system’s
coupling to its environment, which we discuss here.

Coupled light-matter systems, and associated quan-
tum technologies, are generating considerable excitement
[5–7,29]. Of course, in any real-world scenario, one must
consider the impact of the environment on the system of
interest. For recent research on this topic see Ref. [37] and
references therein. In this paper, we do not explore the full
complexity of the memory effects, dissipation, and decoher-
ence expected when a polaritonic system is coupled to a
bath, or baths; rather, we introduce phenomenological param-
eters that may account for damping and decoherence in the
magnon-polariton theory at a basic level. The results are then
compared to experimental data in Sec. V.

We assume ohmic (frequency-independent) damping of the
magnon modes, in which case the damped retarded magnon-
polariton propagator may be written [Dret

mp(ω) = βDmp(z →
ω + i0+)]

Dret
mp(ω) = −2ωr

ω2 − ω2
mp + iω�mp

, (80)

where from Eq. (59)

ω2
mp = ω2

r + (�r/2)2 − 2α2ωrχ
′(ω), (81)

and

ω�mp = ω�r + 2α2ωrχ
′′(ω). (82)

A factor of �r has been included to account for any intrinsic
damping of the resonator mode. The �r term in the expres-
sion for ωmp is a counterterm which eliminates a shift in the
resonator frequency due to its damping (see the discussion
in Sec. III B). The reactive and absorptive components of
the dynamic susceptibility are given in Eqs. (27) and (28).
The magnon damping functions {�m}, are assumed to be
frequency independent, although they will vary with the trans-
verse field. The magnon-polariton propagator can be viewed
as a damped photon propagator, but the magnon “bath” leads
to a frequency-dependent damping function, and a complex
set of magnon-polariton modes that follow from the zeros of
ω2 − ω2

mp(ω), or equivalently ωmp(ωp) = ωp.
Consider a system with a single magnon mode for which

the polariton modes follow from the real part of

ω2
p = ω2

r − (ωp + i�r/2)2 − 4g2
mωrωm

ω2
m − (ωp + i�m/2)2

. (83)

When the damping is weak, we recover the upper and lower
polariton modes given in Eq. (66). A superradiant phase tran-
sition will occur if the coupling strength is sufficiently strong
to drive the lower polariton mode to zero. In the damped
system, the condition for superradiance is

gm >

√
ωmωr

2

[(
1 + �2

r

4ω2
r

)(
1 + �2

m

4ω2
m

)] 1
2

. (84)

In the absence of damping and decoherence, if a magnon
mode softens to zero, the magnon-polariton system will al-
ways be driven into a superradiant phase (recall gm → ∞ as
ωm → 0). With damping present, the divergence of gm may
be matched by a divergence on the right-hand side of Eq. (84)
preventing the lower polariton mode from dropping to zero.
Furthermore, if the constituent spins making up the soft mode
are subject to decoherence, one expects a reduction in its spec-
tral weight, and hence a reduction in the coupling strength gm.
This may lead to weak coupling and prevent superradiance.
We will elaborate on this point in Sec. V.

In a damped system comprised by multiple magnon modes,
the magnon-polariton mode and linewidth equations are

ω2
mp = ω2

r +
(

�r

2

)2

+
∑

m

2g2
mωr (ω − ωm)

(ω − ωm)2 + (�m/2)2
−
∑

m

2g2
mωr (ω + ωm)

(ω + ωm)2 + (�m/2)2
− 2g2

0ωr
(�0/2)2

ω2 − (�0/2)2
(85)

and

ω�mp = ω�r +
∑

m

g2
mωr�m

(ω − ωm)2 + (�m/2)2
−
∑

m

g2
mωr�m

(ω + ωm)2 + (�m/2)2
+ 2g2

0ωr
ω�0/2

ω2 + (�0/2)2
. (86)

Note that the coupling to the zero mode, defined by g2
0 ≡

α2χel, will decay exponentially with temperature, and van-
ish in the paramagnetic phase of the system. We will drop

this mode from subsequent consideration. One may compare
the results for ωmp and �mp with the RWA results given
in Eqs. (64) and (65). As previously noted, as a coherent
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quantum Ising system is tuned through its critical point, one
expects the RWA results to break down.

Assuming that gm is sufficiently weak, or �m is sufficiently
strong, to prevent superradiance, one finds the damping of the
polariton mode at resonance (ωp = ωm) to be

�p = �mp(ωp) ≈ �r

[
1 + C

ωr

ωp

]
, (87)

where the cooperativity of the system is C = 4g2
m/(�m�r ).

Recall that ωp is the polariton mode energy, ωm is the magnon
mode energy, and ωr is the bare resonance frequency of the
resonator. From inspection of Eq. (86), we see that as the soft
magnon mode is tuned through ωp, a resonance is expected to
appear in the linewidth of the polariton mode. The form and
magnitude of the resonance will depend on how gm and �m

vary with the transverse field.
The collective magnon modes, in particular the soft mode,

are entangled many-body eigenstates of the spin system. The
quantum coherence of the collective magnon modes is not eas-
ily accounted for by the theory. When the quantum coherent
superposition of spins comprising a particular magnon mode
are in contact with their environment, one expects the super-
position of spin states to give way to a classical mixture of spin
states. In our analysis of the LiHoF4 system below, we account
for this decoherence by transferring spectral weight from the
collective RPA excitations to the single-ion excitation spec-
trum. This leads to mixed single-ion and collective-mode
transmission in the magnon-polariton propagator.

With dissipation and decoherence present, in the limit
gm/�m → 0, we have ωmp = ωr and �mp = �r . The resonator
shows no evidence of the magnon modes. We note, however,
that this is distinct from the light-matter decoupling discussed
by De Liberato [10]. In light-matter decoupling, the diamag-
netic response of the system localizes the photon modes away
from the matter modes and shifts the frequency of the photons,
so that the polaritonic quasiparticle operators have a distinct
light or matter character. The diamagnetic term is absent in the
magnon-polariton theory, and the environment is an additional
feature that may prevent superradiance.

V. COMPARISON TO EXPERIMENT

So far, our analysis has been theoretical. In order to
have confidence in the results, one must compare theoretical
work to experimental data. We do so here by comparing the
magnon-polariton theory to transmission spectra of LiHoF4 in
loop gap microwave resonators [4,33].

Consider the low-temperature effective Hamiltonian of the
LiHoF4 system [15,16,38]:

Heff = −C2
zz

2

∑
i �= j

Vi jτ
z
i τ

z
j − �

2

∑
i

τ x
i + Hhyp, (88)

where the interaction contains a dipolar component, and a
weaker antiferromagnetic component

Vi j = JDDzz
i j − Jnn. (89)

In what follows, we assume a LiHoF4 sample with zero de-
magnetization field, consistent with a needle shaped sample,
or a striped domain pattern in which the demagnetization field

in the bulk of the sample averages to zero (see Sec. II B
of the supplement to Ref. [4] for more details). The eigen-
states of the J = 8 holmium spins are mixed and split by
the crystal electric field and an applied transverse field. The
{τμ

i } are Pauli operators describing the two lowest electronic
spin states, and Czz(Bx ) is a truncation parameter which de-
pends on the applied transverse field, as does the effective
transverse field, �(Bx ), which splits the energies of the two
lowest electronic spin eigenstates. The truncated longitudinal
holmium electronic spin operator is Jz = Czzτ

z. The hyperfine
component of the Hamiltonian contains the coupling of each
effective spin-1/2 operator to its I = 7/2 nucleus. This splits
the single-ion Hamiltonian into 16 electronuclear levels, all
of which can be accommodated using our formalism. Further
details of the LiHoF4 system are discussed in Appendix C.

The spin-photon interaction is assumed to be

Hint = −α(a† + a)δJz
0, (90)

where δJz
0 = Czzδτ

z
0 is the k = 0 wave vector component of

the longitudinal spin fluctuation operator (δJz
0 = Jz

0 − 〈Jz〉MF)
in Fourier space, and the coupling constant is [see Eq. (18)]

α = η
√

2π
√

h̄ωr

√
ρJD. (91)

In LiHoF4 we have four spins in each unit cell having vol-
ume Vcell = 2.88 × 10−28 m3, to give a total number of spins
N = 4Vsample/Vcell. The spin density is ρ = 4/Vcell = 1.39 ×
1028 m−3, which is about 3.3 times the value in YIG, and the
dipolar energy per unit cell is ρJD = 13.52 mK = 282 MHz.
The filling factor η is left as a free parameter which depends
on details of the resonator.

Consider, as an example, an ωr/(2π ) = 1 GHz applied ac
field. In temperature units, we have h̄ωr/kB = 48 mK. Plug-
ging in the numbers, we find the coupling at 1 GHz to be

α|1 GHz ≈ η × 64 mK = η × 1.33 GHz. (92)

Using this value as a reference, the coupling for any given
frequency (in GHz) is given by

α( f ) ≈ η
√

f / f0 × 1.33 GHz, (93)

where f0 = 1 GHz is the reference frequency.
The resonator transmission function is given by Eq. (6). It

follows from Eq. (80) that

|S21|2 ∝ Im
[
Dret

mp

] = 2ωωr�mp(
ω2 − ω2

mp

)2 + (ω�mp)2
. (94)

Without knowledge of the proportionality constant, one
cannot obtain �mp from the amplitude and phase of the
transmission function; however, one may still obtain the
magnon-polariton modes, and compare qualitative features of
their linewidths with theoretical results.

If the coupling between the resonator photons and the mag-
netic excitations is weak, the modes of the resonator will differ
little from the modes of LiHoF4, apart from the appearance of
an additional mode corresponding to the resonator frequency.
In Fig. 1, we illustrate the RPA transmission spectrum of a
needle shaped sample of LiHoF4 in a 1-GHz resonator, at
zero temperature, with a filling factor of η = 0.01, along with
the MF modes of LiHoF4. The low-energy RPA modes of
the resonator differ little from the RPA modes of LiHoF4,
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FIG. 1. Modes of LiHoF4, at zero temperature, in a 1-GHz res-
onator with a filling factor of η = 0.01. We assume the average
demagnetization field in the sample is zero. Due to the weak cou-
pling, the RPA modes of the resonator are much the same as the
RPA modes of LiHoF4, with an additional mode at the resonator
frequency. The MF modes of the LiHoF4 system are shown as dashed
lines for comparison. The mode showing significant softening in the
upper band of energy levels has dominant spectral weight. This mode
has been measured in neutron-scattering experiments [39]. In the
inset, we see the lowest-energy electronuclear mode soften to zero
at the quantum critical point. A similar figure showing the electronu-
clear modes of LiHoF4, and their spectral weights, is provided in
Ref. [16].

apart from the addition of the resonator mode. In the upper
band of excitations, we see the gapped electronic mode which
has been measured in neutron-scattering experiments [39]. A
comparison of spectral weights determined by Eq. (79) shows
that, under weak coupling, the RPA transmission spectrum of
the resonator is dominated by the resonator mode.

When the coupling between the resonator photons and the
magnetic excitations is weak, the resonator transmission spec-
trum does not exhibit any novel features. If the filling factor is

FIG. 2. Damped RPA transmission function of LiHoF4 in a
1.9-GHZ microwave resonator at zero temperature. We consider a
sample of LiHoF4 in which the average demagnetization field is
zero, and assume a filling factor of η = 0.25. In the upper left-
hand figure, the dampings of the magnon modes and the resonator
mode are �m = 1 μK = 20.837 kHz and �r = 1 nK = 20.837 Hz,
respectively. With this weak damping, the system is driven into a
superradiant phase. On the right, the damping of the soft mode
has been increased to �m=1 = 0.5 K = 10.419 GHz which stops the
lower polariton mode from softening to zero, preventing the superra-
diant phase transition. The upper polariton mode is attenuated to the
point where it is no longer visible in the transmission spectrum.

FIG. 3. Measured transmission function of LiHoF4 in a 1.9-GHZ
microwave resonator. The inverse quality factor of the resonator
mode is shown on the right. The measured value of 1/Q (blue) has
been decomposed into the sum of three Gaussian peaks (red). The
central peak corresponds to absorption at the phase transition. The
satellite peaks to either side of the central peak occur where the soft
mode is degenerate with the resonator mode.

increased to η = 0.25, we see interesting features in the RPA
transmission spectrum due to the hybridization of the magnon
and photon modes. In Figs. 2–6, we show the effects of damp-
ing and decoherence on the theoretical resonator transmission,
and we compare the results to experimental data.

In Fig. 2, we consider constant ohmic damping of the
magnon modes. As discussed in Sec. IV C, we find that strong
damping of the magnon modes may prevent the superradi-
ant quantum phase transition expected as the quantum Ising
material is tuned through its critical point. The theoretical
results for the resonator transmission are in poor agreement
with the experimental data, shown in Fig. 3, and it is necessary
to refine our treatment of the damped magnon modes. In
Fig. 4, we show the single-ion and collective-mode resonator
transmission using a more realistic model for the damping
parameters. Our estimates of the magnitudes of the damping
parameters fall short of what is necessary to prevent superra-
diance. In order to account for this discrepancy, we introduce

FIG. 4. Damped transmission function of LiHoF4 in a 3.2-GHz
microwave resonator with a filling factor of η = 0.25 in the RPA
(left), and in MF theory (right). We consider the zero-temperature
transmission of a LiHoF4 sample with zero average demagnetization
field. The damping parameters are given by �m ∝ Amω2

m (similarly
for the MF modes). The proportionality constant is chosen so that
the damping parameters are roughly in line with what one expects
for spin vacancies in diamond (see text). In the RPA (left), the
damping is insufficient to prevent superradiance in the system due to
the divergent spectral weight of the magnon soft mode. The spectral
weight carried by the lowest MF mode does not diverge, and the re-
sultant coupling strength is not strong enough to cause superradiance
in the single-ion resonator spectrum (right). In a system subject to
decoherence, one expects to see both single-ion and collective-mode
transmission.
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FIG. 5. Mixed single-ion and collective-mode transmission of a
LiHoF4 sample in a 1.9-GHz resonator at zero temperature. The
filling factor is set to η = 0.25 and we assume the average demag-
netization field is zero. The damping parameters are chosen to be in
line with what one might expect for spin vacancies in diamond. In the
upper left figure the decoherence factor is set to γdec = 0.5 GHz. The
sharp dip in the upper polariton mode occurs where the soft mode
crosses γdec. In the upper right figure the decoherence factor has been
increased to γdec = 15 GHz, which is sufficient to prevent superradi-
ance. Further increasing the decoherence factor attenuates the soft
mode and closes the avoided level crossing in the spectrum. In the
experimental data, one expects a weak avoided level crossing to show
up as a resonance in the inverse quality factor of the resonator.

a phenomenological model to account for decoherence of the
collective magnon modes.

To explore the effects of decoherence, we assume spectral
weight is transferred from collective magnon modes to single-
ion excitations in the magnon-polariton propagator. This leads
to a reduced coupling between the collective magnon modes
and the photons, and mixed single-ion and collective-mode
transmission in the resonator. In Fig. 5, we show the effects of
tuning the decoherence rate of the collective magnon modes
in the phenomenological model; as the decoherence rate is
increased, the superradiant quantum phase transition gives
way to an avoided level crossing between the magnon soft
mode and the resonator mode, which, upon further increas-
ing the decoherence rate, gives way to a resonance at the
transverse-field values where the resonator mode is degener-
ate with the soft mode. The model is then used to calculate
mixed single-ion and collective-mode resonator transmission
at frequencies where the resonator mode is degenerate with
the lowest single-ion excitation, and the results are compared
to experimental data for a bimodal loop gap microwave res-
onator. We find good agreement between the experimental
data and the theoretical results.

Consider Fig. 2, in which we show the zero-temperature
transmission spectrum of LiHoF4 in a ωr/(2π ) = 1.9 GHz
resonator with constant ohmic damping of the magnon
modes. We see that when the modes are weakly damped,
the lower polariton mode softens to zero, marking a super-
radiant quantum phase transition in the system. As discussed
following Eq. (84), by increasing the damping of the soft

FIG. 6. Mixed single-ion and collective-mode transmission of
LiHoF4 in a 3.2- and 3.7-GHz resonator at zero temperature. The
filling factor is set to η = 0.25, and the damping parameters are cho-
sen to be in line with what one expects for spin vacancies in diamond.
The decoherence factor is set to γdec = 100 GHz, a value for which,
although faint, the soft mode is visible in the transmission spectrum.
Comparing the avoided level crossing in the 3.2-GHz resonator to
the 3.7-GHz resonator in the upper pair of figures, we see a larger
avoided level crossing at the lower frequency. This is due to the in-
crease of the spectral weight of the magnon mode at 3.2 GHz, which
supersedes the reduction in coupling strength due to the lower res-
onator frequency. In the lower pair of figures, we sum the calculated
transmission from the 3.2- and 3.7 GHz resonators, and compare the
results to transmission through a bimodal loop gap resonator. In the
experimental data, interactions between the resonator modes lead to
an antiresonance near 3.6 GHz and hybridization of the polariton
modes not accounted for in the theoretical calculation. The lowest
polariton mode in the experimental data exhibits weak avoided level
crossings consistent with the presence of the collective soft mode,
and Walker modes, in the material (see text for details).

mode from �m=1 = 1 μK = 20.837 kHz to �m=1 = 0.5 K =
10.419 GHz, the lower polariton mode no longer softens to
zero; however, the resulting transmission function is in poor
agreement with the experimental data.

In Fig. 3 we show the experimental resonator transmission
and the inverse quality factor of the resonator mode (1/Q),
which is proportional to the linewidth of the polariton mode.
The inverse quality factor shows a resonance near the phase
transition that may be decomposed into the sum of three dis-
tinct peaks. The central peak is due to absorption at the phase
transition. As the LiHoF4 sample is tuned through its critical
point, one expects absorption at all frequencies, similar to
critical opalescence [4]. The two satellite peaks correspond to
resonances in the transmission function where the resonator
polariton mode (ωp) is degenerate with the soft mode (ωm).
To better capture the experimental data, we consider a refined
model for the damping parameters, and make use of an ansatz
meant to capture the effects of decoherence of the collective
magnon modes.

In a more realistic model for the damping of the magnon
modes, the damping parameters will vary as a function of
transverse field and frequency. We neglect the memory effects
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associated with the frequency dependence of the damping
parameters; however, we incorporate the transverse-field de-
pendence of the parameters by considering damping due to an
oscillator bath environment at the frequency of the magnon
mode. The damping of a mode at frequency ωm is given
by �m = γ ′(ωm), where γ ′(ω) is given in Eq. (D12) of Ap-
pendix D. We find that

�m = 2π
∑

z

g2
zm[δ(ωm − ωz ) − δ(ωm + ωz )], (95)

where the frequency-independent damping function �m is in
agreement with what one obtains using a master equation ap-
proach [40]; the transverse-field dependence of the damping
function is due to the transverse-field dependence of the
magnon mode ωm. Converting the sum over bath modes to
an integral, one obtains

�m = 2πg2
zmρb(ωm)n(ωm), (96)

where ρb(ωm) is the density of states of the bath modes at
frequency ωm = ωz > 0, and n(ωm) is the Bose-Einstein dis-
tribution function.

Recall that the magnon-photon coupling strength in
LiHoF4 is given by g2

m = α2Am [Eq. (62)], with α2 =
2πη2(ρJD)ωr , as in Eq. (91). We assume the coupling be-
tween magnons and bath modes has a similar form g2

zm =
g2

0Am = ZωmAm (for light-matter coupling, one has Z =
2πη2ρJD). Assuming a quadratic density of states, ρb(ωm) =
ρ0ω

2
m, in the high-temperature limit (βωm � 1), the damping

parameter may be written

�m = C0Amω2
m where C0 = 2πZh̄ρ0kBT . (97)

The spectral weights of the magnon modes go like Am ∼
1/ωm, so one expects a reduction in the damping of the soft
mode as ωm → 0.

The damping of LiHoF4 due to a phonon bath has been
analyzed by Buchhold et al. [41]. Specific-heat measure-
ments [42] in LiYF4 and LiLuF4 indicate Debye temperatures
of θD = 560 and 540 K, respectively. The Debye tempera-
ture of LiHoF4 is expected to be similar. In terms of the
Debye temperature and the corresponding Debye frequency
ωD = kBθD/h̄, and assuming the phonon density of states
is ρph(ωm) = ρ0ω

2
m, Buchhold et al. find the damping of a

magnon mode ωm to be

�m ≈ γD
T

θDω2
D

ω2
m = γ̃D

T

θDω2
D

Amω2
m, (98)

where in the final expression we have excluded Am from
the decay rate at the Debye frequency and temperature, γD.
Comparing with Eq. (97), we see that C0 = γ̃DT/(θDω2

D). Lit-
tle information on phonons in LiHoF4 is available; however,
for spin vacancies in diamond one has [41] γD/(θDω2

D) =
10−6 → 10−5 (GHz K)−1. At the experimentally relevant
temperature of T = 50 mK, this leads to C0 ≈ 5 × (10−8 →
10−7) GHz−1, and damping of the magnon modes of less than
1 kHz. This is very weak damping of the modes; however,
interactions between magnetic fluctuations, and environmen-
tal degrees of freedom other than phonons, are expected to
increase the dampings.

In Fig. 4, we consider single-ion and collective-mode res-
onator transmission, with the damping of the collective modes

given in (97), and the damping of the single-ion excitations
given by �mn = C0amnE2

nm, where amn and Enm are discussed
in Sec. IV A. We consider a 3.2-GHz resonator relevant to
the experimental data shown in Fig. 6; results for a 1.9-GHz
resonator are similar. The single-ion resonator transmission
follows from replacing χ with χ0 in Eqs. (85) and (86),
as discussed in Sec. IV A. We set C0 = 10−5 K−1 = 4.8 ×
10−7 GHz−1, so the damping parameters are roughly in line
with what one expects for spin vacancies in diamond. The
MF and RPA resonator transmission is calculated at zero
temperature, which accurately captures the most dominant
modes present at the experimentally relevant temperature of
T = 50 mK. This validates using the T = 50 mK estimate
for the damping parameters in the zero-temperature resonator
transmission calculations. Modes corresponding to excitations
between thermally excited states of the quantum Ising mate-
rial will be the subject of future work.

The damping of the collective magnon modes in Fig. 4
is insufficient to prevent a superradiant phase transition in
the system, which is inconsistent with the experimental data.
However, we have not accounted for the quantum coherence
of the collective magnon modes. We attempt to do so by as-
suming that spectral weight is transferred from the collective
magnon modes to the single-ion excitation spectrum shown
on the right-hand side of Fig. 4. Indeed, for each mode in
Eqs. (85) and (86), we assume (for example)

2g2
mωr (ω − ωm)

(ω − ωm)2 + (�m/2)2

→ 2̃g2
mωr (ω − ωm)

(ω − ωm)2 + (�m/2)2
+ 2̃g2

mnωr (ω − Enm)

(ω − Enm)2 + (�mn/2)2
,

(99)

where

g̃2
m(ω = ωm) = α2Am

[
ω2

m

γ 2
dec + ω2

m

]
(100)

and

g̃2
mn(ω = ωm) = α2amn

[
1 − ω2

m

γ 2
dec + ω2

m

]
. (101)

This leads to mixed single-ion and collective-mode transmis-
sion in the magnon-polariton propagator. Fourier transforming
g̃2

m(ω), one finds that this ansatz corresponds to exponential
decay of the collective-mode spectral weight at a rate deter-
mined by γdec. We set ω = ωm to capture decoherence at the
relevant frequency scale of the quantum Ising material. In the
development of the magnon-polariton theory, the photons cou-
ple to an auxiliary field which describes magnetic fluctuations,
and determines the magnon modes present in the material. The
quantum coherence of the collective magnon modes is a tacit
assumption which may not be valid if environmental degrees
of freedom, or higher-order interactions (beyond the RPA)
between the magnetic fluctuations, lead to decoherence on
timescales faster than the relevant timescales of the magnon
modes.

In Fig. 5, we show the mixed single-ion and collective-
mode resonator transmission as one tunes the decoherence
rate γdec. The damping parameters are chosen to be roughly
consistent with what one expects for spin vacancies in
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diamond, as in Fig. 4. With γdec = 0.5 GHz, the reduction in
the coupling strength is insufficient to prevent the superradiant
quantum phase transition. Increasing the decoherence rate to
γdec = 15 GHz, which is larger than the relevant magnon and
resonator mode frequency, leads to an avoided level crossing
in the transmission spectrum, rather than a superradiant phase
transition, as shown in the upper right plot in Fig. 5. Further
increasing the decoherence rate attenuates the soft mode, and
weakens the avoided level crossing in the transmission spec-
trum. With the coherence time set to picoseconds, which is
shorter than the timescale set by the inverse of the magnon
mode frequency, the magnon soft mode will show up as a
resonance in the resonator transmission spectrum, as seen in
the experimental data.

We have shown the effects of ohmic damping of the
magnon modes, in conjunction with an ansatz meant to
capture the impact of decoherence of the collective spin ex-
citations comprising the magnon modes. When decoherence
is accounted for, we find that the superradiant quantum phase
transition, or strong avoided level crossing, expected as the
spectral weight of the magnon soft mode diverges, gives
way to a resonance in the resonator transmission function. In
Fig. 6, we consider resonator frequencies of ωr/(2π ) = 3.2
and 3.7 GHz, and compare the calculated transmission func-
tion to experimental data for a bimodal loop gap resonator.
At these frequencies, the resonator modes are degenerate with
the lowest single-ion excitation in the system. We see strong
avoided level crossings when the lowest single-ion excitation
is degenerate with the resonator modes. The increased spectral
weight of the single-ion excitation at 3.2 GHz leads to a
stronger avoided level crossing than at 3.7 GHz, despite the
reduction in frequency. This is consistent with the avoided
level crossings seen in the experimental data.

The experimental data are for a bimodal resonator. In the
theoretical calculation we assume the two resonator modes
are independent, and sum their response. This fails to capture
interactions between the resonator modes, which lead to the
antiresonance seen in the experimental data near 3.6 GHz,
and mixing of the calculated polariton modes. Nevertheless,
we find good agreement between the calculated resonator
transmission and the experimental data. The lowest polariton
mode exhibits a series of weak avoided level crossings in
the ferromagnetic phase of the quantum Ising material. These
avoided level crossings are due to the soft mode, and Walker
modes present in the material [43,44]. An analysis of the
Walker modes will be the subject of future work. Previously,
in Ref. [4], the magnon mode responsible for the avoided
level crossings seen in the experimental data shown in Fig. 6
was attributed to an excited-state transition; this was based
on an RPA analysis of the LiHoF4 crystal. In the current pa-
per, assuming mixed single-ion and collective-mode resonator
transmission, we attribute these avoided level crossings to the
lowest single-ion excitation (ground state to first excited state)
shown by the dashed line in the inset to Fig. 1. The structure
and energy of the lowest single-ion excitation, and the first
excited state in the RPA calculation, are similar.

Accounting for, and exploring, the effects of dissipation
when polariton modes are coupled to environmental degrees
of freedom is an active research area [37,45]; incorporating
the effects of decoherence of the collective magnon modes

comprising the magnon polaritons in a quantum Ising material
coupled to a resonator mode is a more difficult task. Here, we
have developed a basic formalism amenable to investigating
these problems in real materials, with LiHoF4 being the mag-
netic system of primary interest. We have demonstrated the
effects of ohmic damping of the magnon modes in LiHoF4 in a
microwave resonator, and we have explored the consequences
of decoherence of the magnon modes present in the material
via an ansatz in which spectral weight is transferred from the
collective modes to single-ion excitations. Our results are in
good agreement with experimental data for LiHoF4 in a mi-
crowave resonator; we leave further refinements of the theory,
and more sophisticated numerical analysis, as a subject for
future work.

VI. CONCLUSIONS AND OUTLOOK

Beginning with a microscopic spin model for a quan-
tum Ising system in a microwave resonator, we have derived
an effective finite-temperature quantum field theory for the
magnon-photon system, and an effective Hamiltonian for the
coupled bosonic modes. The theory has been used to calculate
the magnon-polariton propagator, and the results have been
applied to LiHoF4, which has a complex, multilevel, single-
site Hamiltonian. One may also apply this formalism to the
quantum optics models, and quantum environment models,
discussed in Appendix A.

Our analysis of a quantum Ising material via the in-
troduction of an auxiliary field describing the magnetic
fluctuations goes beyond standard spin quantization tech-
niques. The resulting theory captures multiple magnon modes,
the quasielastic diffusive pole of the quantum Ising material,
and excitations between thermally excited states of the mate-
rial. Our treatment of the light in terms of harmonic oscillator
variables is basic; however, we believe it provides clarity,
and we have made contact between paradigmatic quantum
optics models and oscillator bath theory. One may extend
and expound details of the theory by treating the light, or the
environment, in a more sophisticated manner.

A key result of this paper is that tuning the applied trans-
verse field allows one to tune the magnon-photon coupling
strength. As one approaches the critical point of the quantum
Ising material, the magnon-photon coupling strength will di-
verge. A fixed system of spins in an ac magnetic field will
not exhibit a diamagnetic response, so deep strong coupling
between the magnons and photons is achieved without the
light-matter decoupling inherent in the Dicke [8], Dicke-Ising
[46], and Hopfield models [9]. However, in the real world,
coupling to an environment will lead to dissipation and de-
coherence, which may lead to weak coupling between the
magnon and photon modes. We have treated dissipation and
decoherence phenomenologically, and compared the results
of the theory to experimental data on LiHoF4 in a loop gap
microwave resonator. We consider the agreement between
the experimental data and the theoretical results to be good,
although further refinement of the theory, particularly more
detailed modeling of the environment and the resulting deco-
herence, and a more sophisticated numerical analysis, would
be beneficial. We leave this a subject for future work.
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We have focused on the magnon-polariton propagator be-
cause it may be the best way to make contact between
theoretical work and experimental results, and our treatment
of the light in terms of harmonic oscillator variables is the eas-
iest way to obtain results. Harmonic oscillator variables, and
eigenstates, have also been used to study entanglement, and
the quantum-chaotic properties, of the Dicke model [47,48].
Alternatively, one may make use of a coherent-state basis of
eigenstates for the light. This was an original approach to the
problem [20] that allows for a more thorough investigation of
the thermodynamics of the system. More recently, coherent
states were used to study entanglement between a qubit and
a field mode [49]. We see further investigation into the entan-
glement properties of light-matter systems as a promising area
for research [50], with particular relevance to high sensitivity
magnon detection [51], and associated quantum technologies.

This paper provides a detailed microscopic theory of a
quantum optics system. Such a theory is necessary in or-
der to make progress in more topical research areas such
as exceptional point physics [52,53], non-equilibrium phases
and phase transitions [54–58], and novel dynamics including
time-crystalline behavior [59–61], present in damped-driven
quantum systems [62,63]. The formalism here is complemen-
tary to, and more general than, standard approaches which
make use of bosonic or fermionic representations of the spin
degrees of freedom, and the field theory is amenable to treat-
ment via the Keldysh functional integral approach. Finally, the
burgeoning field of quantum magnonics will require models
of light-matter interactions, following the lines of the present
paper.
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APPENDIX A: OTHER MODELS

In the absence of spin-spin interactions, our model shares
similarities with the Dicke model [8], which is a paradigmatic
model of quantum optics. The basic Dicke model describes
an atomic cloud, approximated as a set of two level systems,
coupled to a single photonic field mode (h̄ = 1):

HDicke = ωra†a + ω0Jz + α√
N

(a† + a)Jx + HA2 . (A1)

The collective atomic operators are given by Jμ =∑i Jμ
i =∑

i σ
μ
i /2, where the σ

μ
i are Pauli operators. In this model, the

atoms (or spins) are mobile charged particles. This collective
set of atomic operators couples to a position operator of a
single field mode, x ∼ a† + a. The diamagnetic term,

HA2 = D(a† + a)2, (A2)

comes from squaring the canonical momentum of the mobile
charged particles. Invoking the Thomas-Reiche-Kuhn sum
rule for a multilevel atom [21,64], one finds that in the two
level approximation D > α2/ω0, so that the magnitude of the

diamagnetic term diverges like the square of the coupling
strength. If Ising interactions between the atoms in the Dicke
model are included, one has the Dicke-Ising model [46]. The
absence of the diamagnetic term in Eq. (9) distinguishes it
from the Dicke-Ising model. As the diamagnetic term has im-
portant consequences, these two models should be considered
distinct.

The Dicke model was introduced in 1954 to describe an
atomic system in a light field. In 1958, Hopfield developed
a model for dielectric materials in an electromagnetic field
[9]. Considering only a pair of modes in the resulting exciton-
polariton theory, the Hopfield model is given by (h̄ = 1)

HHop = ωra†a + ω0b†b − ig(a† + a)(b† − b) + HA2 . (A3)

The coupling in the Hopfield model is between an effective
position operator, x ∼ a† + a, and an effective momentum
operator p ∼ i(b† − b). The diamagnetic term is the same as
for the Dicke model [Eq. (A2)], with D = g2/ω0. As for the
spin-photon model in Eq. (3), one can show that the substitu-
tion i(b† − b) → b† + b leads to an equivalent formulation of
the model (see Appendix B). The formalism developed here
encompasses both the Dicke and Hopfield models, and gener-
alizes the basic Dicke model to include interactions between
multilevel spins or atoms.

The models developed by Dicke and Hopfield share a
connection with work on quantum environments. In quantum
optics, light is an intrinsic part of the system; in the theory
of quantum environments, light, other bosonic or fermionic
modes, and spin degrees of freedom are extrinsic to the system
of interest, and lead to dissipation and decoherence in the
system. The quantum optics models discussed above share
strong similarities with standard decoherence models describ-
ing a quantum system coupled to its environment, such as the
Caldeira-Leggett model and the spin-boson model [12,13]. In
the decoherence models the system is comprised by the matter
modes, and the environment is analogous to the light in the
quantum optics models.

The formalism developed in this paper is applicable to all
the models discussed above. Furthermore, it can be used to
generalize the basic Dicke model and spin-boson model to
include interactions between multilevel atoms or spins with
complicated single-ion Hamiltonians.

APPENDIX B: MOMENTUM VERSUS
POSITION COUPLING

The magnon-polariton theory has been derived for a system
in which the spins couple to a photon position operator, as in
Eq. (9). One can show that Eq. (3) is an equivalent formulation
of the model. The two expressions are related by a canonical
transformation that swaps photon position and momentum
operators [27]. Similarly, the position-momentum coupling in
the Hopfield model, given by Eq. (A3), may be replaced with
a coupling between position operators.

Consider the Hopfield model. In terms of harmonic oscil-
lator variables,

x =
√

h̄

2mω
(a† + a) and p = i

√
h̄mω

2
(a† − a), (B1)
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the model is written

HHop = P2

2M
+ 1

2
Mω2

r X 2 + (p − cmX )2

2m
+ 1

2
mω2

0x2, (B2)

with c = 2g
√

Mωr/mω0. One may replace the position-
momentum coupling with a position coupling by making the
change of variables x̃ = p/(mω0) and p̃ = −mω0x. In terms
of creation and annihilation operators, this canonical transfor-
mation leads to

H̃Hop = h̄ωr

(
a†a + 1

2

)
+ h̄ω0

(
b̃†b̃ + 1

2

)
− h̄g(a† + a)(̃b† + b̃) + h̄g2

ω0
(a† + a)2, (B3)

where the coupling is now between position operators. Note
that this Hamiltonian is equivalent to the Caldeira-Leggett
Hamiltonian (see Appendix D) if only a single bath mode is
considered. For reference, we note that the roles of the a and
b bosons in the interaction and in the diamagnetic term may
be interchanged making use of a gauge transformation [65].

Now consider the model given by Eq. (3). One may de-
velop the magnon-polariton theory in the same manner as
for the position coupling case. The photon component of the
magnon-polariton Hamiltonian, Hmp = Hγ + Hφ + Hint, is
then

Hγ = h̄ωr

(
a†a + 1

2

)
− ih̄λ(a† − a) − D(a† − a)2, (B4)

or, in terms of harmonic oscillator variables,

Hγ = p2

2mr
+ 1

2
mrω

2
r x2 −
√

2h̄

mrωr
λp + 2

mr h̄ωr
Dp2. (B5)

One may rescale the mass and frequency of the oscillators,

mγ = mr

[
1 + 4D

h̄ωr

]−1

and ωγ = ωr

√
1 + 4D

h̄ωr
, (B6)

to obtain

Hγ = p2

2mγ

+ 1

2
mγ ω2

γ x2 −
√

2h̄

mγ ωγ

λγ p, (B7)

where λγ is given in Eq. (44).
When the spins couple to a photon momentum operator the

interaction between the auxiliary field and the photons is given
by

Hint = h̄αγ

√
2

h̄mγ ωγ

φ0 p, (B8)

with αγ given in Eq. (55). Combining the terms involving
photon operators, Hγφ = Hγ + Hint, we have

Hγφ = p2

2mγ

+ 1

2
mγ ω2

γ x2 − 2h̄

mγ ωγ

p(λγ − αγ φ0). (B9)

The canonical transformation between the photon position
and momentum operators leads to

H̃γφ = p̃2

2mγ

+ 1

2
mγ ω2

γ x̃ 2 −√2h̄mγ ωγ x̃(λγ − αγ φ0),

(B10)
which is equivalent to the result obtained if the spins are
coupled to photon position operators in the original Hamil-
tonian (the rescaled mass of the oscillator does not affect the
quantized theory).

APPENDIX C: THE LiHoF4 SYSTEM

Consider the low-temperature effective Hamiltonian of
LiHoF4 given in Eq. (88) of the main text. The truncation of
the LiHoF4 system, and the low-energy electronuclear modes
present in the system, have been dealt with in detail elsewhere
[15,16,38,66]; here we present details relevant to the calcula-
tion of the magnon-polariton propagator.

In the RPA, the longitudinal dynamic susceptibility may be
written as χ (z) = χ0(z)/[1 − V0χ0(z)], where the MF suscep-
tibility, χ0(z) = χ̃0(z) + χ0

elδz,0, is written explicitly in terms
of the MF parameters of the system in Eq. (22). The inelastic
component of the RPA susceptibility is χ̃ (z) = χ̃0(z)/[1 −
V0χ̃0(z)], and the RPA expression for the quasielastic diffusive
pole is

χel = χ̃0(0) + χ0
el

1 − V0
(
χ̃0(0) + χ0

el

) − χ̃0(0)

1 − V0χ̃0(0)
. (C1)

Defining the ratio of the MF and RPA modes of the system
to be

R ≡ 1

1 − V0χ̃0(0)
=
∏

n>m E2
nm∏

m ω2
m

, (C2)

the elastic component of the RPA susceptibility may be
written

χel = R2χ0
el

1 − RV0χ
0
el

. (C3)

The elastic component of the dynamic susceptibility has not
been analyzed explicitly in this paper; however, it is provided
here for reference.

The inelastic component of the dynamic susceptibility,
given in Eq. (23), determines the RPA modes of the LiHoF4

system and their spectral weights. These spectral weights
determine the strength of the magnon-photon coupling in the
magnon-polariton theory. In terms of the MF energy levels
and matrix elements of the longitudinal spin operator, the RPA
expression for the inelastic component of the longitudinal
dynamic susceptibility at zero wave vector is

χ̃ (z) = −C2
zz

∑
n>m |cmn|2 pmn2Enm

∏
t>s �=nm

(
E2

ts − z2
)∏

n>m

(
E2

nm − z2
)− C2

zzV0
∑

n>m |cmn|2 pmn2Enm
∏

ts �=mn

(
E2

ts − z2
) . (C4)
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In a needle shaped sample of LiHoF4, with zero demagnetiza-
tion field, the zero-wave vector component of the interaction
strength [Eq. (89)] is approximately V0 ≈ 74 mK, and, as
mentioned following Eq. (89), Czz is a truncation parameter,
with Jz = Czzτ

z in the truncated spin-1/2 electronic subspace.
The remaining parameters are defined in Sec. III B following
Eq. (22).

The poles of the dynamic susceptibility determine the RPA
magnon modes of the system, and their residues determine the
spectral weights of the modes. The poles and residues can be
calculated as in Sec. IV B of the body of the paper. One finds
the spectral weights of the RPA magnon modes to be given by

Am = C2
zz

ωm

∑
n>m

|cmn|2 pmnEnm

∏
t>s �=nm

[
E2

ts − ω2
m

]∏
s �=m

[
ω2

s − ω2
m

] , (C5)

where {ωm} are the zero-wave vector RPA modes of the sys-
tem. The spectral weights of the RPA modes scale like Am ∼
1/ωm, with the spectral weight of the soft mode diverging at
the quantum critical point.

APPENDIX D: COUPLED HARMONIC OSCILLATORS

Consider the Caldeira-Leggett Hamiltonian in which a har-
monic oscillator is linearly coupled to a bath of harmonic
oscillators (quantum Brownian motion) [12,67,68]:

HCL = P2

2M
+ 1

2
Mω2

s X 2 +
∑

z

[
p2

z

2m
+ 1

2
mω2

z x2
z

]

−
∑

z

czXxz +
∑

z

c2
z

2mzω2
z

X 2. (D1)

The bath leads to damping and decoherence of the primary
oscillator. In terms of bosonic creation and annihilation oper-
ators the Caldeira-Leggett Hamiltonian may be written

HCL = h̄ωs

(
b†

0b0 + 1

2

)
+
∑

z

h̄ωz

(
a†

z az + 1

2

)
−
∑

z

h̄gz(a†
z + az )(b†

0 + b0) +
∑

z

Dz(b†
0 + b0)2,

(D2)

where

gz = cz

2
√

mzωzMωs
and Dz = h̄g2

z

ωz
. (D3)

The Caldeira-Leggett counterterm is equivalent to the dia-
magnetic term present in light-matter Hamiltonians. In order
to determine the damping due to the bath, we calculate the
propagator of the primary oscillator.

The counterterm shifts the frequency of the primary har-
monic oscillator:

HCL = h̄ωs

(
b†b + 1

2

)
+
∑

z

h̄ωz

(
a†

z az + 1

2

)
−
∑

z

h̄gz(a†
z + az )(b† + b), (D4)

where the rescaled coupling and shifted frequencies are

gz = cz

2
√

mzωzMωs
and ω2

s = ω2
s

[
1 + 4Dz

h̄ωs

]
. (D5)

The propagator of the shifted oscillator modes is defined by

Db(τ ) = 〈Tτ [b†(τ ) + b(τ )](b† + b)〉. (D6)

Treating the interaction between oscillators perturbatively us-
ing the Matsubara formalism, one finds the propagator of the
primary oscillator in Matsubara frequency space to be

Db(iωn) = −2ωs

β h̄

⎡⎣ 1

(iωn)2 − ω2
s −∑z

4g2
z ωsωz

(iωn )2−ω2
z

⎤⎦. (D7)

This is equivalent to Eq. (61) of the main text apart from
the fact that the counterterm has shifted the frequency of the
primary oscillator.

Consider a single bath mode. The poles of the polariton
propagator yield the upper and lower polariton modes:

ω2
± = ω2

s + ω2
z

2
±
√(

ω2
s − ω2

z

2

)2

+ 4g2
z ωsωz. (D8)

In the absence of the counterterm (D = 0), the lower polari-
ton mode reaches zero at a critical value of gz = √

ωsωz/2.
In a light-matter system, this coupling strength marks a su-
perradiant quantum phase transition [19,20]. The presence
of the counterterm forestalls this transition so that ω− > 0
for any value of gz. The counterterm is also responsible
for a decoupling of the light and matter modes (or sys-
tem and bath modes) as the coupling strength is increased
[21]. Indeed, consider what happens as the bare coupling
between oscillators diverges, cz → ∞. The shifted frequency
of the primary oscillator diverges linearly with the coupling,
ωs ∼ cz, and the rescaled coupling between the oscillators
goes like gz ∼ cz/

√
ws ∼ √

cz. Comparing the rescaled cou-
pling strength to the shifted oscillator frequency we see
that η ≡ gz/ωs ∼ 1/

√
cz → 0. As the bare coupling between

oscillators is increased, the bath mode will become an increas-
ingly weak perturbation to the system.

We return now to the oscillator bath environment. In or-
der to make contact with standard results, we express the
propagator for the shifted system modes in terms of the prop-
agator of the original modes of the system Db = ωsDb0/ωs.
Analytically continuing to real frequencies [Dret

b0
(ω) =

βDb0 (iωn → ω + i0+]), the retarded propagator of the orig-
inal bosonic system modes may be written

Dret
b0

(ω) = −2ωs

h̄

[
1

ω2 + iγω − ω2
s

]
, (D9)

where the damping function is

γ (ω) = i

ω

[∑
z

4g2
zωs

ωz
+ lim

ε→0

∑
z

4g2
zωsωz

ω2 + iωε − ω2
z

]
. (D10)

The real and imaginary parts of the damping function, γ =
γ ′ + iγ ′′, are given by

ωγ ′′(ω) =
∑

z

4g2
zωs

ωz

[ −ω2

ω2
z − ω2

]
, (D11)
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and
ωγ ′ = 2πωs

∑
z

g2
z[δ(ω − ωz ) − δ(ω + ωz )]. (D12)

In terms of the original harmonic oscillator variables, the
spectral density of the bath is defined by

J (ω) ≡ Mωγ ′(ω) = π

2

∑
z

c2
z

mzωz
δ(ω − ωz ), (D13)

in agreement with the standard result. The counterterm
(or equivalently, the diamagnetic term) eliminates a zero-
frequency shift in γ ′′. This term is absent in the magnon-
polariton theory. In the magnon-polariton theory, the photons
are considered to be the system, and the magnons, which are
themselves subject to dissipation and decoherence, comprise
a bath.

[1] A. Imamoglu, Phys. Rev. Lett. 102, 083602 (2009).
[2] Ö. O. Soykal and M. E. Flatté, Phys. Rev. Lett. 104, 077202

(2010).
[3] Ö. O. Soykal and M. E. Flatté, Phys. Rev. B 82, 104413 (2010).
[4] M. Libersky, R. D. McKenzie, D. M. Silevitch, P. C. E. Stamp,

and T. F. Rosenbaum, Phys. Rev. Lett. 127, 207202 (2021).
[5] D. Lachance-Quirion, Y. Tabuchi, A. Gloppe, K. Usami, and Y.

Nakamura, Appl. Phys. Express 12, 070101 (2019).
[6] C. M. Hu, Solid State Phys. 71, 117 (2020).
[7] B. Bhoi and S. K. Kim, Solid State Phys. 71, 39 (2020).
[8] R. H. Dicke, Phys. Rev. 93, 99 (1954).
[9] J. J. Hopfield, Phys. Rev. 112, 1555 (1958).

[10] S. De Liberato, Phys. Rev. Lett. 112, 016401 (2014).
[11] R. P. Feynman and F. L. Vernon, Ann. Phys. (NY) 24, 118

(1963).
[12] A. O. Caldeira and A. J. Leggett, Ann. Phys. (NY) 149, 374

(1983).
[13] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A.

Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).
[14] D. Bitko, T. F. Rosenbaum, and G. Aeppli, Phys. Rev. Lett. 77,

940 (1996).
[15] P. B. Chakraborty, P. Henelius, H. Kjønsberg, A. W. Sandvik,

and S. M. Girvin, Phys. Rev. B 70, 144411 (2004).
[16] R. D. McKenzie and P. C. E. Stamp, Phys. Rev. B 97, 214430

(2018).
[17] K. B. Tolpygo, Ukr. J. Phys. 53, 93 (2008).
[18] K. Huang, Nature (London) 167, 779 (1951).
[19] K. Hepp and E. H. Lieb, Ann. Phys. (NY) 76, 360 (1973).
[20] Y. K. Wang and F. T. Hioe, Phys. Rev. A 7, 831 (1973).
[21] K. Rzazewski, K. Wodkiewicz, and W. Zakowicz, Phys. Rev.

Lett. 35, 432 (1975).
[22] I. Kovacevic, P. Babkevich, M. Jeong, J. O. Piatek, G. Boero,

and H. M. Rønnow, Phys. Rev. B 94, 214433 (2016).
[23] G. D. Mahan, Many-Particle Physics, 2nd ed. (Plenum, New

York, 1990).
[24] D. M. Pozar, Microwave Engineering, 4th ed. (Wiley, New

York, 2012).
[25] D. F. Walls and G. J. Milburn, Quantum Optics, 2nd ed.

(Springer, New York, 2008).
[26] M. Harder, L. Bai, C. Match, J. Sirker, and C. M. Hu, Sci. China

Phys. Mech. Astron. 59, 117511 (2016).
[27] A. J. Leggett, Phys. Rev. B 30, 1208 (1984).
[28] X. Zhang, C. L. Zou, L. Jiang, and H. X. Tang, Phys. Rev. Lett.

113, 156401 (2014).
[29] A. F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and

F. Nori, Nat. Rev. Phys. 1, 19 (2019).
[30] S. Suzuki, J. Inoue, and B. K. Chakrabarti, Quantum Ising

Phases and Transitions in Transverse Ising Models, 2nd ed.
(Springer, New York, 2013).

[31] A. Dutta, G. Aeppli, B. K. Chakrabarti, U. Divakaran, T. F.
Rosenbaum, and D. Sen, Quantum Phase Transitions in Trans-
verse Field Spin Models: From Statistical Physics to Quantum
Information, 1st ed. (Cambridge University, New York, 2015).

[32] G. Flower, M. Goryachev, J. Bourhill, and M. E. Tobar, New J.
Phys. 21, 095004 (2019).

[33] M. M. Libersky, D. M. Silevitch, and A. Kouki, Proceedings
of the 2019 22nd International Conference on the Computation
of Electromagnetic Fields (COMPUMAG) (IEEE, New York,
2019), p. 14.

[34] J. Jensen and A. R. Mackintosh, Rare Earth Magnetism Struc-
tures and Excitations, 1st ed. (Clarendon, Oxford, 1991).

[35] R. B. Stinchcombe, J. Phys. C 6, 2459 (1973).
[36] R. Shankar, Quantum Field Theory and Condensed Matter, 1st

ed. (Cambridge University, New York, 2017).
[37] E. Cortese and S. De Liberato, J. Chem. Phys. 156, 084106

(2022).
[38] S. M. A. Tabei, M. J. P. Gingras, Y. J. Kao, and T. Yavors’kii,

Phys. Rev. B 78, 184408 (2008).
[39] H. M. Rønnow, R. Parthasarathy, J. Jensen, G. Aeppli, T. F.

Rosenbaum, and D. F. McMorrow, Science 308, 389 (2005).
[40] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and

R. J. Schoelkopf, Rev. Mod. Phys. 82, 1155 (2010).
[41] M. Buchhold, C. S. Tang, D. M. Silevitch, T. F. Rosenbaum, and

G. Refael, Phys. Rev. B 101, 214201 (2020).
[42] R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, J. Appl.

Phys. 98, 103514 (2005).
[43] L. R. Walker, Phys. Rev. 105, 390 (1957).
[44] L. R. Walker, J. Appl. Phys. 29, 318 (1958).
[45] Y. P. Wang and C. M. Hu, J. Appl. Phys. 127, 130901

(2020).
[46] E. Cortese, L. Garziano, and S. De Liberato, Phys. Rev. A 96,

053861 (2017).
[47] C. Emary and T. Brandes, Phys. Rev. E 67, 066203 (2003).
[48] N. Lambert, C. Emary, and T. Brandes, Phys. Rev. Lett. 92,

073602 (2004).
[49] M. J. Everitt, W. J. Munro, and T. P. Spiller, Phys. Rev. A 79,

032328 (2009).
[50] M. Boneberg. I. Lesanovsky, and F. Carollo, Phys. Rev. A 106,

012212 (2022).
[51] D. Lachance-Quirion, S. P. Wolski, Y. Tabuchi, S. Kono, K.

Usami, and Y. Nakamura, Science 367, 425 (2020).
[52] D. Zhang, X.-Q. Luo, Y.-P. Wang, T.-F. Li, and J. Q. You, Nat.

Commun. 8, 1368 (2017).
[53] M.-A. Miri and A. Alú, Science 363, eaar7709 (2019).
[54] L. M. Sieberer, M. Buchhold, and S. Diehl, Rep. Prog. Phys.

79, 096001 (2016).
[55] E. G. Dalla Torre, S. Diehl, M. D. Lukin, S. Sachdev, and P.

Strack, Phys. Rev. A 87, 023831 (2013).

043716-19

https://doi.org/10.1103/PhysRevLett.102.083602
https://doi.org/10.1103/PhysRevLett.104.077202
https://doi.org/10.1103/PhysRevB.82.104413
https://doi.org/10.1103/PhysRevLett.127.207202
https://doi.org/10.7567/1882-0786/ab248d
https://doi.org/10.1016/bs.ssp.2020.09.003
https://doi.org/10.1016/bs.ssp.2020.09.004
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRev.112.1555
https://doi.org/10.1103/PhysRevLett.112.016401
https://doi.org/10.1016/0003-4916(63)90068-X
https://doi.org/10.1016/0003-4916(83)90202-6
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/PhysRevLett.77.940
https://doi.org/10.1103/PhysRevB.70.144411
https://doi.org/10.1103/PhysRevB.97.214430
http://archive.ujp.bitp.kiev.ua/files/journals/53/si/53SI21p.pdf
https://doi.org/10.1038/167779b0
https://doi.org/10.1016/0003-4916(73)90039-0
https://doi.org/10.1103/PhysRevA.7.831
https://doi.org/10.1103/PhysRevLett.35.432
https://doi.org/10.1103/PhysRevB.94.214433
https://doi.org/10.1007/s11433-016-0228-6
https://doi.org/10.1103/PhysRevB.30.1208
https://doi.org/10.1103/PhysRevLett.113.156401
https://doi.org/10.1038/s42254-018-0006-2
https://doi.org/10.1088/1367-2630/ab3e1c
https://doi.org/10.1088/0022-3719/6/15/009
https://doi.org/10.1063/5.0077950
https://doi.org/10.1103/PhysRevB.78.184408
https://doi.org/10.1126/science.1108317
https://doi.org/10.1103/RevModPhys.82.1155
https://doi.org/10.1103/PhysRevB.101.214201
https://doi.org/10.1063/1.2128696
https://doi.org/10.1103/PhysRev.105.390
https://doi.org/10.1063/1.1723117
https://doi.org/10.1063/1.5144202
https://doi.org/10.1103/PhysRevA.96.053861
https://doi.org/10.1103/PhysRevE.67.066203
https://doi.org/10.1103/PhysRevLett.92.073602
https://doi.org/10.1103/PhysRevA.79.032328
https://doi.org/10.1103/PhysRevA.106.012212
https://doi.org/10.1126/science.aaz9236
https://doi.org/10.1038/s41467-017-01634-w
https://doi.org/10.1126/science.aar7709
https://doi.org/10.1088/0034-4885/79/9/096001
https://doi.org/10.1103/PhysRevA.87.023831


R. D. MCKENZIE et al. PHYSICAL REVIEW A 106, 043716 (2022)

[56] P. Kirton, M. M. Roses, J. Keeling, and E. G. Dalla Torre, Adv.
Quantum Technol. 2, 1800043 (2019).

[57] L. Henriet, Z. Ristivojevic, P. P. Orth, and K. Le Hur, Phys. Rev.
A 90, 023820 (2014).

[58] D. A. Paz and M. F. Maghrebi, Phys. Rev. A 104, 023713
(2021).

[59] Z. Gong, R. Hamazaki and M. Ueda, Phys. Rev. Lett. 120,
040404 (2018).

[60] B. Zhu, J. Marino, N. Y. Yao, M. D. Lukin, and E. A. Demler,
New J. Phys. 21, 073028 (2019).

[61] R. Hanai and P. B. Littlewood, Phys. Rev. Res. 2, 033018
(2020).

[62] J. Kasprzak et al., Nature (London) 443, 409 (2006).
[63] J. A. Muniz, D. Barberena, R. J. Lewis-Swan, D. J. Young, J.

R. K. Cline, A. M. Rey, and J. K. Thompson, Nature (London)
580, 602 (2020).

[64] P. Nataf and C. Ciuti, Nat. Commun. 1, 72 (2010).
[65] L. Garziano, A. Settineri, O. Di Stefano, S. Savasta, and F. Nori,

Phys. Rev. A 102, 023718 (2020).
[66] H. Eisenlohr and M. Vojta, Phys. Rev. B 103, 064405 (2021).
[67] U. Weiss, Quantum Dissipative Systems, 3rd ed. (World Scien-

tific, Singapore, 2008).
[68] H. P. Breuer and F. Petruccione, The Theory of Open Quantum

Systems, 1st ed. (Oxford University, New York, 2002).

043716-20

https://doi.org/10.1002/qute.201800043
https://doi.org/10.1103/PhysRevA.90.023820
https://doi.org/10.1103/PhysRevA.104.023713
https://doi.org/10.1103/PhysRevLett.120.040404
https://doi.org/10.1088/1367-2630/ab2afe
https://doi.org/10.1103/PhysRevResearch.2.033018
https://doi.org/10.1038/nature05131
https://doi.org/10.1038/s41586-020-2224-x
https://doi.org/10.1038/ncomms1069
https://doi.org/10.1103/PhysRevA.102.023718
https://doi.org/10.1103/PhysRevB.103.064405

