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Quantum spins placed on the corners of a square lattice can dimerize
and form singlets, which then can be transformed into a magnetic
state as the interactions between dimers increase beyond thresh-
old. This is a strictly 2D transition in theory, but real-world materials
often need the third dimension to stabilize long-rangeorder.Weuse
high pressures to convert sheets of Cu2+ spin 1/2 dimers from local
singlets to global antiferromagnet in the model system SrCu2(BO3)2.
Single-crystal neutron diffractionmeasurements at pressures above
5 GPa provide a direct signature of the antiferromagnetic ordered
state, whereas high-resolution neutron powder and X-ray diffrac-
tion at commensurate pressures reveal a tilting of the Cu spins out of
the plane with a critical exponent characteristic of 3D transitions.
The addition of anisotropic, interplane, spin–orbit terms in the ven-
erable Shastry–Sutherland Hamiltonian accounts for the influence
of the third dimension.

condensed matter physics | quantum magnetism | phase transition |
dimensional cross-over | neutron and X-ray scattering

Two-dimensional systems lie at the boundary between the
order-destroying effects of fluctuations in lower dimension

and the emergence of true long-range order in higher dimension.
How ordered states form and remain stable at finite temperature
is a fundamental question that cuts across the sciences. In
physics, surfaces, quantum wells, and layered compounds all
have provided insights into the peculiar nature of 2D phases,
phase transitions, and dimensional cross-over effects. Of partic-
ular interest for quantum phase transitions is the theoretically
tractable case of interacting magnetic spins placed on a 2D
square lattice, the Shastry–Sutherland model (1). The geometry
prevents simultaneous satisfaction of all spin–spin coupling
terms, leading to a frustrated state that in turn enhances the
effects of quantum fluctuations. As the coupling terms are tuned,
magnetic order can emerge, but its nature and the potential in-
fluence of other sheets of spins in a real physical system have not
been probed directly.
The Shastry–Sutherland model can be described by the Ham-

iltonian:

H = J
X
nn

Si · Sj + J′
X
nnn

Si · Sj; [1]

where a set of S = 1/2 spins sits on a square lattice and interacts
via a regular array of diagonal bonds. This creates a network of
dimers with antiferromagnetic intradimer coupling J and inter-
dimer coupling J′. The ground state depends on the ratio of
J′=J = x. For x < 0.7, the ground state consists of S = 0 singlets,
whereas for x > 0.9 a global antiferromagnetic phase is expected.
For intermediate values of x, a variety of locally ordered states
has been predicted (2).
The first known experimental realization of the Shastry–

Sutherland lattice is SrCu2(BO3)2 (SCBO) (3). The magnetism in

SCBO consists of S = 1/2 Cu2+ ions in well-separated planes
whose nearest-neighbor interactions are mediated by in-plane
oxygen bonds; layered Cu–O compounds of this kind are of
broad interest due to their role in driving phenomena such
as high-temperature superconductivity. At ambient conditions,
SCBO forms a crystal in the tetragonal space group I-42m with
a = b = 8.995 Å and c = 6.659 Å. The Cu2+ ions form orthogonal
structural and magnetic dimers in the a–b plane (4). As each
dimer sits on a mirror plane that passes through the center of its
orthogonal neighbor, the unit cell contains four dimers on two
layers with alternating orientations (3) (Fig. 1). SCBO has a non-
magnetic, singlet ground state (5), with 0.6 < x < 0.69 (6). Hy-
drostatic pressure can be used to tune x, with a transition into an
intermediate phase observed at P ∼2 GPa (7, 8). The magnetic
characteristics of the singlet–triplet transition emerge even in X-ray
scattering experiments due to a remarkably robust spin–lattice
coupling (7, 9, 10). At P ∼4.5 GPa a second phase transition has
been observed, marked by a structural transition from tetragonal
to monoclinic ordering (7, 11). In this article, we use both X-ray
and neutron scattering measurements to illuminate the structural
and magnetic configurations that permit long-range order to
emerge for P > 5 GPa, directly identifying for the first time, to our
knowledge, the predicted antiferromagnetic state.

Significance

Magnetic materials are composed of individual spins that interact
with each other and under suitable conditions can arrange them-
selves in an ordered array. When spins are confined to two-
dimensional sheets, small perturbations can disrupt their order
and destroy the magnetic state. We show how a set of interact-
ing, quantum-mechanical spins placed on the corners of a square
array evolves from a set of locally bonded entities to a globally
ordered structure. The system stabilizes itself against fluctuations
through subtle local contractions, elongations, and tilts. The com-
bination of neutron and X-ray scattering at pressures up to
60,000 atmospheres reveals the complex interplay of structural
distortions and spin alignments that permit long-range order to
emerge in this model quantum magnet.
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Results and Discussion
We begin with fundamental symmetry considerations. In SCBO’s
low-pressure tetragonal phase, structural Bragg reflections satis-
fying h + k + l = 2n+1 are forbidden due to the symmetry of the
I-42m space group. Above themonoclinic transition atP∼ 4.5GPa,
the presence or absence of diffraction intensity at these lo-
cations serves to indicate which symmetries associated with the
tetragonal I-42m parent structure are preserved in the reconfig-
ured lattice. We performed high-resolution single-crystal neutron
diffraction at P = 5.5 ± 0.2 GPa, well above the 4.5-GPa pressure
for which SCBO has been predicted to eventually enter an anti-
ferromagnetic ordered phase (7, 8). We plot in Fig. 2 data at P =
5.5 GPa and T = 90 and 290 K, where we observe the low-tem-
perature emergence of a peak at Q = (0 3 0) which is structurally
forbidden due to the symmetry of the I-42m lattice space group.
This peak can be understood as a signature of long-range Néel
order creating a magnetic supercell, within which orthogonal Cu–Cu
dimers have opposite spin orientations. These two inequivalent
types of Cu dimers reduce the symmetry compared with the bare
lattice and allow scattering intensity at the previously forbidden
position. The Néel ordering arises from pressure tuning of the
ratio of the coupling constants: for sufficiently large intradimer
coupling J′ compared with the antiferromagnet interdimer cou-
pling J, the individual spins in each dimer align ferromagnetically
and the set of dimers in one sheet forms a square Néel-ordered
lattice. This ordering corresponds to the expected antiferromag-
netic long-range order on the Shastry–Sutherland lattice.
To elucidate the microscopic underpinnings of the magnetic

and structural configuration in the high-pressure phase, we per-
formed high-resolution powder neutron diffraction, refined using
the Rietveld method (12–14), at P = 5.5 GPa for a range of
temperatures. We plot in Fig. 3A data at T = 90 and 120 K, where
we observe a change in the scattered neutron intensity at the
forbidden peak (0 3 0). Above T ∼ 120 K, the observed diffraction
peaks obey the selection rule h + k + l = 2n; i.e., the same set of
peaks that were forbidden in the low-pressure tetragonal phase
are similarly forbidden in the monoclinic high-pressure, high-

temperature phase. C121 (#5) is the only monoclinic space group
that arises from the tetragonal parent structure and hews to this
selection rule. Below T ∼ 120 K, the selection criterion is violated,
with finite intensity at previously forbidden peaks, and a struc-
tural refinement indicates a space group of P121 (#3). We test
this identification using a simulation of the expected neutron
diffraction intensity at T = 90 K, including the cross-sections for
both SCBO’s structural and antiferromagnetic components, and
compare experiment and computer simulation in Fig. 3B. The
space group identifications also permit us to track the lattice
parameters as a function of temperature. We see in Fig. 3C that
the evolution can be described as an increase in c associated with
a simultaneous decrease in a, and a slight decrease in b as tem-
perature is cooled below T ∼ 120 K. The change in lattice con-
stants is accompanied by a decrease in the monoclinic angle β; the
overall volume of the unit cell changes by less than 1%.
We plot in Fig. 4 a comparison between single-crystal X-ray

diffraction in a diamond anvil cell and powder neutron diffraction
in a Paris–Edinburgh cell for P = 5.5 GPa at the position and
temperature where a forbidden (0 3 0) peak develops. The intensity
scaling by 100 is consistent with the relative cross-sections for X-ray
and neutron scattering. The simulation of the neutron intensity
(dashed line) incorporates the antiferromagnetic structure de-
scribed below; different spin configurations contribute from 0 to
30% of the total neutron signal at (0 3 0) (Fig. S1) and provide
a quantitative test of the enhancement measured at that Q in Fig.
3A. The high-resolution single-crystal synchrotron X-ray data per-
mit us to focus in on the critical behavior of the symmetry change
from C121 to P121 with decreasing T (Fig. 4, Inset). A power-law
fit to the data gives Tc = 122 ± 0.2 K and a critical exponent β =
0.36 ± 0.04, consistent with the value of β = 0.37 expected for a 3D
Heisenberg transition (15) rather than the nominally expected 2D
behavior. That this transition is associated with magnetic order is
further corroborated by the rapid decrease in the neutron diffrac-
tion intensity at the forbidden odd-index peaks as expected for the
Q dependence of Cu’s magnetic form factor.
The full structural refinement derived from the powder neutron

measurements allows for the determination of the copper atomic
positions within the unit cell and permits us to interrogate the

Fig. 1. Crystallographic structure of SrCu2(BO3)2 (SCBO). (Upper) Low-tem-
perature structure of SCBO projected into the a–b plane. (Lower) a–c plane.
Solid, dashed, and dotted blue lines show the interactions between the
dimerized Cu2+ ions, representing the intradimer (J = 84 K), in-plane inter-
dimer (J’ = 54 K), and out-of-plane interdimer (J′′ = 8 K) (6) interactions,
respectively. This hierarchy of direct exchange interactions underlies the
effectively 2D nature of the system in the absence of global magnetic order.

Fig. 2. Signature of the antiferromagnetic ordered phase in SCBO. Single-
crystal neutron diffraction intensities of SCBO at T = 90 K (blue) and T = 290 K
(red) at P ∼ 5.5 GPa vs. reciprocal lattice units (r.l.u). A high-temperature (T =
290 K) background has been subtracted from these data sets. Solid lines are
Voigt fits to the data. (Left) Structural Bragg peak at Q = (0 4 0). The intensity
stays constant with changing temperature. The height of the peak is normal-
ized to unity. (Right) Emergence of themagnetic Braggpeak at the structurally
forbidden reflection (0 3 0) at lower temperature. The intensity of the (0 3 0)
peak is normalized to the intensity of the (0 4 0) structural Bragg peak.
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influence of the third dimension on the emergence of long-range
magnetic order. We sketch in Fig. 5 an overall schematic of the
Cu dimer structure in the antiferromagnet phase, including the
spin configuration. The conventional Shastry–Sutherland model is
shown in Fig. 5A. It consists of triplet dimers that are antiferro-
magnetically coupled along the diagonal directions in the a–b
plane, with a 90° rotation between planes. The symmetry reduction
which we have uncovered at Tc has two effects on the structure of
the dimers, sketched in Fig. 5B (see Fig. 6 for in-plane projections)
and shown quantitatively as a function of temperature in Fig. 7.
First, the previously equivalent dimers separate into two inter-
leaved sets of different lengths. One set, shown in red in Fig. 5B,
elongates starting at Tc. The other set, shown in blue, contracts.
Second, both sets of dimers begin to tilt out of the plane, with the
elongated dimers showing a larger slant (13°) than the subtle tilt
(3°) evidenced by the contracted dimers.
The starting point for understanding the magnetic structure in

SCBO and the connection itmight have to the structural distortions

is Eq. 1, which has been eminently successful in describing the
magnetic behavior of SCBO at low pressure and low temperature
(7). If the magnetic structure of SCBO were completely described
as a topological realization of the pure 2D Shastry–Sutherland
model with x > 0.7 and no interplanar coupling, then the unit cell
of SCBO would include four equivalent Cu–Cu dimers on two dif-
ferent layers (Fig. 5A). The spin structure at each plane would be
expected to consist of spin triplets located on each Cu–Cu dimer
with moments ferromagnetically aligned and antiferromagnetically
coupled to neighboring dimers. Although the Shastry–Sutherland
model does not specify the absolute orientation of spins, consid-
ering the symmetry of the lattice and the fact that neutrons can only
probe the component of the magnetic moment perpendicular toQ,
a plausible high-symmetry orientation is to have the spins perpen-
dicular to the dimer axis and pointing out of the magnetic plane.
Under this simplifying assumption, the dimer arrangements retain
their mirror symmetry and the onset of magnetic ordering would at
most result in an overall expansion or contraction of the lattice with
no change in symmetry.
Given that a change in symmetry is experimentally observed

with the emergence of peaks at h + k + l = 2n + 1, we extend the
planar Shastry–Sutherland model of Eq. 1 to incorporate both
direct antiferromagnetic coupling between dimers on adjacent
layers as well as anisotropic Dzyaloshinskii–Moriya (DM) inter-
actions (16–19). This gives a full spin Hamiltonian of

H =
X
hi;ji

X
l

JAF~S
l
i ·~S

l
j + J′AF~S

l
i ·~S

l+1
i + JDM~Dij ·

�
~S
l
i ×~S

l
j

�

+ J′DM~D′l ·
�
~S
l
i ·~S

l+1
i

�
;

[2]

where sums over nearest-neighbor Cu–Cu dimers in each (0 0 n)
plane are given by <ij> whereas l sums over adjacent planes

Fig. 3. Symmetry reduction with decreasing temperature at high pressure in
SCBO. (A) Powder neutron diffraction intensity vs. lattice spacing for SCBO at
T= 90 K (blue) and 120 K (red) at P = 5.5 GPa. A forbidden peak emerges at the
lower T. Data at T = 120, 160, and 180 K all behave similarly. (B) Simulation of
neutron powder diffraction cross-section for antiferromagnetic SCBO (black)
in its high-pressure, low-temperature phase compared with actual data col-
lected at T = 90 K and P = 5.5 GPa (blue). Scattering from the pressure cell
gasket occurs at d ∼ 2.7 Å. (C) SCBO lattice parameters as a function of tem-
perature extracted from powder neutron diffraction data collected at P = 5.5
GPa. Data at temperatures below T= 120 K are refined using a P121 symmetry;
data collected for T > 120 K are refined using a C121 model.

Fig. 4. Onset of antiferromagnetic order. Temperature dependence of the
integrated intensity of X-ray single-crystal diffraction data (black solid
squares) times 100 and of neutron powder diffraction data (open blue tri-
angles) for (0 3 0) reflection at P = 5.5 GPa. The integrated intensity of the
(0 3 0) peak in antiferromagnetic SCBO was calculated from a simulation
of structural and magnetic neutron cross-sections (red dashed line). All in-
tegrated intensities at (0 3 0) are normalized to the integrated intensities of
their corresponding (2 0 0) reflection. (Inset) Single-crystal X-ray diffraction
data collected at the emergence of the forbidden (0 3 0) reflection. The solid
line is a power-law fit to I = Io [(Tc − T)/Tc]

2β, with Tc = 122 ± 0.2 K and
a critical exponent, β = 0.36 ± 0.04, associated with a 3D universality class.
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(with two planes per unit cell), the spins here are the effective
spins (S = 1) of the triplet state of a dimer as opposed to the true
spins (S = 1/2) of Eq. 1, and D and D′ are unit vectors indicating
the directions of the in-plane and interplane DM interactions,
respectively. JAF and J′AF are the in-plane and interplane antifer-
romagnetic exchange interactions between the effective S = 1
spins of the triplet state of the dimers (Fig. 5B). Previous work
on the magnetic structure of SCBO in the low-pressure phase
suggests that the in-plane antiferromagnetic exchange interaction
JAF dominates the in-plane DM term JDM, and that to leading
order the latter term can be neglected (18, 19). For the interplane
case, however, the direct antiferromagnetic exchange coupling
J′AF is significantly smaller as the system is constructed of well-
isolated dimer sheets, allowing the interplane component of the
DM interaction J′DM to play a large role in the determination of
the low-temperature, high-pressure spin structure. In the low-
pressure tetragonal phase of SCBO, the presence of an inversion
center at the midpoint of each Cu–Cu dimer gives an alternating
structure to the DM interaction, with the direction vector D′(l)
proportional to (−1)l (18, 20). The small monoclinic distortion of
the high-pressure phase is unlikely to qualitatively change this sign
structure. If we then start with the spin configuration illustrated in
Fig. 5A and add the weak DM interactions as a first-order per-
turbation, the magnetic energy of the system can be reduced by
slightly tilting the dimer magnetizations away from the (0 0 n)
planes while constraining the in-plane projections in consecutive
planes to order at right angles with respect to each other. Due to
the alternating sign of D′(l), these projections do not order heli-
cally, but instead alternate between clockwise and counterclock-
wise rotations, resulting in the spin structure illustrated in Fig. 5B.
In-plane projections are shown at the bottom of Fig. 6Q:11 .
The effects of this tilting magnetization on the dimer lengths

depend on whether the dimer has magnetization projections par-
allel or perpendicular to its axis. Note that a small but nonzero JDM

will rotate the in-plane spin components slightly away from these
directions (Fig. 6C); however, due to the large in-plane direct
couplings this effect does not significantly change the overall

magnetic structure. In the case of the blue dimers, the in-plane spin
components are aligned axially, resulting in a dipole–dipole-based
magnetostrictive force that compresses the dimers. In the case of
the red dimers, the in-plane components of the spins making up
the triplet state are aligned side by side, the sign of the dipole in-
teraction is reversed, and the magnetostrictive force tends to ex-
pand the dimer bond length. The expanded red dimers then have
a tendency to tilt out of plane to minimize the strain on the sur-
rounding oxygen atoms. By contrast, the contracted blue dimers
see a reduction in their tilt angles (Fig. 6D). This difference in
behavior is again consistent with the analysis of the neutron
powder diffraction data shown in Fig. 7, in which the red dimers
are seen to tilt over a much larger angle than the blue ones. As the
overall staggered magnetization increases below Tc, these ten-
dencies become stronger, and the 3D antiferromagnetic order
stabilizes. The small nonzero tilt angle remaining in the contracted
dimers can be attributed to the overall contraction of the lattice as
a function of decreasing temperature.
The dimensionality of a system has long been known to have

a strong effect on the existence and nature of any ordered state. In
the case of sheets of magnetic dimers placed on a square lattice,
we report the signature of the long-anticipated antiferromagnetic
ordered phase in a Shastry–Sutherland model system, induced by
high pressure at low temperatures, and find that this antiferro-
magnetic phase arises from an inherently 3D magnetic and struc-
tural distortion. The ordered, tilted dimers in SCBOdeduced from
powder neutron diffraction can be described by the Shastry–
Sutherland model, as modified by the inclusion of a subdominant
DM term that couples consecutive layers in the crystal structure.
This is in agreement with our finding that the thermal evolution of
the single-crystal X-ray diffraction intensity of corresponding
(0 2n+1 0) peaks is best fit with a critical exponent belonging to
the 3D universality class. Although well-described by 2D theory in
its low-pressure singlet phase, antiferromagnetic SCBO at high

Fig. 5. Schematic of local dimer rearrangements at the onset of global or-
der. (A) Magnetic structure of SCBO based on the Shastry–Sutherland model’s
prediction of an antiferromagnetic ground state. The solid lines show the
intradimer Cu2+ (S = 1/2) interactions (J) and the dashed lines represent the
interdimer Cu2+ (S = 1/2) interactions (J’). (B) Proposed magnetic structure of
SCBO extracted from neutron powder diffraction data collected at P = 5.5 GPa
and temperatures below T ∼ 120 K. The dashed lines show the in-plane dimer–
dimer (S = 1) interactions (JAF) and the interplane dimer–dimer (S = 1) inter-
actions (J’AF). The no longer equivalent red and blue Cu–Cu dimers are elon-
gated and compressed, respectively, and tilt out of the a–b plane.

Fig. 6. Schematic view of magnetic planes of SCBO in the unit cell. A and Q:17B
show the schematic views of the projections of the spin orientations of Cu2+

ions of SCBO along the (A) a–b and (B) a–c crystallographic planes according
to the 2D antiferromagnetically ordered Shastry–Sutherland model. (C and
D) Schematic views of the projections of the spin orientations of Cu2+ ions of
SCBO along the (C) a–b and (D) a–c crystallographic planes according to the
modified model described in the text. The effects of the anisotropic DM
interaction in the 3D long-range ordered phase results in the slight diver-
gence of the projections of the spin orientations from exactly parallel–per-
pendicular to the dimer axes alignments. B and D show that in the proposed
3D compared with the pure Shastry–Sutherland 2D ordering, the dimers are
tilted with respect to the a–b plane and their bonds are expanded (red) and
contracted (blue).
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pressure supports the well-knownMermin–Wagner theorem (21, 22)
that long-range order can only survive fluctuations in three dimen-
sions (23, 24), and joins geometrically frustrated chiral magnets
(25–29) in underscoring the importance of the DM interaction to
the formation of exotic magnetic ground states.

Methods
The SrCu2(

11BO3)2 single-crystal sample was cut from the same high-quality
single crystal used in previous magnetic neutron scattering experiments (9,
19, 30). It was grown using a floating-zone image furnace at a rate of 0.2
mm/h in an O2 atmosphere. 11B was used to avoid the high neutron absorption
cross-section of natural boron. The sample was cut and polished in a shape of
a disk with diameter of 3.4 mm and height of 1.3 mm in the center and 0.7 mm
on the edges. X-ray Laue measurements established that the sample was
a single crystal with no grain boundaries, with the (0 0 n) crystallographic
direction perpendicular to its surface. The crystal was mounted between two
pressed pellets of lead and placed at the center of a Paris–Edinburgh cell,
fitted with null-scattering TiZr alloy gaskets with self-collimating c-BN anvils
(31). Time-of-flight neutron diffraction measurements were performed at
the SNAPQ:12 beamline of the Spallation Neutron Source at Oak Ridge National

Laboratory to pressures as high as 6 GPa, using lead as a monometer, and
temperatures down to 90 K. The cell was mounted in the equatorial con-
figuration with the sample’s (h k 0) plane coincident with the horizontal
scattering plane, such that the wavevectors near the (0 3 0) magnetic Bragg
peak could be accessed. Detectors were placed 50 cm from the sample at 48°
and 90° relative to the incident beam. Incident neutron wavelengths ranged
from 0.6 to 4.0 Å.

Neutron scattering measurements were performed using a separate
powder sample grown with high-purity 11B to reduce the absorption cross-
section. A pressed pellet was loaded into a Paris–Edinburgh cell with toroidal
boron nitride anvils (31), using 4:1 methanol:ethanol as a hydrostatic pres-
sure medium. Time-of-flight neutron diffraction measurements were per-
formed at the SNAP beamline of the Spallation Neutron Source at Oak Ridge
National Laboratory to pressures as high as 6 GPa and temperatures down to
90 K. The cell was used in the equatorial configuration allowing a wide
angular aperture for the scattered beam; detectors were placed 50 cm from
the sample at 50° and 90° relative to the incident beam. Incident neutron
wavelengths ranged from 0.3 to 3.7 Å. The pressure was determined by
comparing the lattice parameters of the sample with previously measured
X-ray diffraction results (7, 11).

A high-quality single crystal of SrCu2(BO3)2 was grown using a floating-
zone image furnace and cleaved to a 50 μm × 50 μm × 30-μm sample for high-
pressure X-ray measurements (30). The sample was placed in a diamond anvil
cell using 4:1 methanol:ethanol as a hydrostatic pressure medium and a piece
of polycrystalline silver as a manometer; a helium gas membrane provided in
situ pressure tuning at cryogenic temperatures (32). X-ray diffraction mea-
surements were performed at Sector 4-ID-D of the Advanced Photon Source
at Argonne National Laboratory using a six-circle diffraction stage.

Fig. S1 shows computer simulations of theneutron powder diffraction cross-
section for the high-pressure, low-temperature antiferromagnetic phase using
the FULLPROF refinement program (14) which were performed based on the
proposed model for the crystal and magnetic structure of SrCu2(BO3)2 as shown
at the bottomof Figs. 5 Q:13and 6. In these calculations, the atomic positions are in
the P121 space group, and the spins align in the a–c plane such that they are
perpendicular to the dimer axes, with (1 0 0) and (0 1 0) propagation vectors.
The comparison between the pure structural and the structural plus magnetic
neutron cross-section simulations for T = 90 K in the high-pressure phase shows
an increased intensity of ∼30% for (0 3 0) reflection at d = 2.9 Å, in agreement
with the data. Additionally, we simulated powder neutron diffraction cross-
sections for temperatures up to Tc = 120 K. The crystal structures used in these
simulations are the same as those extracted from experimental powder neu-
tron diffraction data at each temperature. When the spin orientations are
aligned in the a–cplane such that they stayperpendicular to the dimer axes, the
results are in agreement with the experimental data showing the evolution of
the normalized intensity of the (0 3 0) magnetic peak as a function of T.
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Fig. S1. Neutron diffraction simulation calculations. Using the FULLPROF refinement program (1) and based on the proposed model for the crystal and
magnetic structure of SCBO as shown in Fig. 5B, we performed computer simulations of the neutron powder diffraction cross-section for the high-pressure,
low-temperature antiferromagnetic phase. The comparison between the pure structural (black) and the structural plus magnetic neutron (red) cross-section
simulations for T = 90 K in the high-pressure phase shows an increased intensity of ∼30% for (0 3 0) reflection at d = 2.9 Å, in agreement with the (0 3 0) peak
observed in the neutron powder diffraction data collected at T = 90 K and P ∼ 5.5 GPa. The calculation considers the decrease of the Cu2+ magnetic form factor
as function of jQj. As a result of this decrease, no additional magnetic peaks were observed at (0 5 0) and above.
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