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Contribution of spin pairs to the magnetic response in a dilute dipolar ferromagnet
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We simulate the dc magnetic response of the diluted dipolar-coupled Ising magnet LiHo0.045Y0.955F4 in
a transverse field, using exact diagonalization of a two-spin Hamiltonian averaged over nearest-neighbor
configurations. The pairwise model, incorporating hyperfine interactions, accounts for the observed drop-off
in the longitudinal (c -axis) susceptibility with increasing transverse field; with the inclusion of a small tilt in
the transverse field, it also accounts for the behavior of the off-diagonal magnetic susceptibility. The hyperfine
interactions do not appear to lead to qualitative changes in the pair susceptibilities, although they do renormalize
the crossover fields between different regimes. The comparison with experiment indicates that antiferromagnetic
correlations are more important than anticipated based on simple pair statistics and our first-principles calculations
of the pair response. This means that larger clusters will be needed for a full description of the reduction in the
diagonal response at small transverse fields.
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I. INTRODUCTION

The dipolar rare-earth magnetic salt LiHoF4 orders at
1.53 K (Refs. 1 and 2) to form an Ising-like ferromagnet
with long, needle-shaped domains oriented along the Ising
c axis.3 This system and the dilution series LiHoxY1−xF4,
with the magnetic Ho3+ ions replaced by nonmagnetic Y3+,
have been studied for more than three decades.4–18 The appeal
of LiHoxY1−xF4 lies in its unique combination of interesting
quantum as well as classical properties and detailed knowledge
of the underlying Hamiltonian, including single-ion crystal-
field and nuclear-hyperfine interaction terms and intersite
dipolar couplings. For example, the pure (x = 1) compound
displays an archetypical electronic quantum phase transition
strongly influenced by the nuclear spin bath.1,19 For moderate
dilution (x > 30%), the system continues to behave as an
Ising ferromagnet with a critical temperature suppressed in
direct proportion to x;1,4,5,12 for smaller x, it was reported
to form a spin glass at low temperatures.17 At x = 4.5%,
there is an accumulation of evidence for a novel antiglass6 in
which the scaled distribution of relaxation times loses its low-
frequency tail as the sample cools. In this phase, the material
was found to exhibit macroscopically long-lived magnetic
excitations8 and a novel combination of strong features in
the specific heat with a featureless magnetic susceptibility
which could only be explained by positing long-range spin
entanglement.9 Other recent experiments report contrasting
results—notably a featureless specific heat from x = 1.8%
to x = 8% (Ref. 13) and no narrowing of the absorption
peak on the low-temperature side as the temperature lowers,20

suggesting that the conventional spin glass may persist to
lower concentrations. Yet a third view has also been suggested:
magnetization measurements by Jonsson et al. failed to find
evidence for a spin-glass transition at either x = 4.5% or
x = 16.5%.14 The interpretation of all of these experiments is
complicated by the need to work at extremely low frequencies
and to achieve proper thermal equilibration; this has led
to some controversy about the interpretation, with recent
results supporting the original assignment of a spin glass at
x = 16.7% and x = 19.8%.21

The differing interpretations on the experimental side
have been accompanied by some confusion about the theory,
with a number of classical Monte Carlo studies failing
to find evidence of the expected spin-glass transition in a
three-dimensional disordered dipolar Ising system.22,23 Most
recently, convincing numerical evidence of this transition has
finally emerged24 through finite-size scaling analysis of the
spin-glass correlation length. But there is also dispute about
whether the dipolar terms in the Hamiltonian are sufficient
to describe the material even in a zero transverse field, with
some authors arguing that the role of transverse fields25 that are
key for entanglement effects9 and nuclear levels coupled by
hyperfine interactions11,26 has been underestimated. Reference
27 is a recent review which concludes that further experiments
are required and that the inclusion of quantum effects and the
role of hyperfine interactions (both originally delineated by 1)
remain significant theoretical issues.

The dynamics in the dilute phases are particularly in-
teresting and could be the key both to understanding these
seemingly contradictory experiments and to determining the
correct theoretical model. As well as the long-lived magnetic
oscillations revealed by hole-burning experiments at x =
4.5%,8 cotunneling of the electronic and nuclear moments
on pairs of neighboring Ho3+ ions has been observed at
the highest dilutions (x = 0.1%)10 through its effect on the
low-frequency zero-field susceptibility. It is appropriate to
revisit the low-frequency susceptibility for several reasons.
First, LiHoxY1−xF4 is expected to be a model for a wide class
of transverse-field dipolar systems. Second, the observation of
long decoherence times and signatures of long-range entan-
glement suggest the possibility of exploiting the Ho3+ ions
as magnetic qubits. Finally, one would like to understand the
precise role of the competition between the collective dipolar
interaction, the nuclear spin bath, and other decoherence
pathways in determining the dynamics of the system.19 Here
we combine an experimental study of the magnetic response
of the dilute system as we tilt the moment away from the
Ising axis under large transverse fields with a theoretical
analysis in which we average over all possible pairs. Our
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purpose is to establish—quantitatively—the extent to which
collective (i.e., beyond-pair) effects are important for the
behavior of the x = 4.5% compound by doing the most precise
possible calculations of the pair susceptibility contribution at
equilibrium. The outcome is that even for this relatively high
level of dilution, the collective effects are important at low
transverse fields.

We presented the experimental results and a short sum-
mary of the theoretical argument in Ref. 18. This paper
gives full details of the model and is structured as follows.
Section II summarizes the experimental techniques employed
and captures briefly the relevant results; Sec. III describes
the techniques employed in our calculations; Sec. IV sets out
the computational results, comparing the susceptibilities with
and without hyperfine interactions to each other and to the
measured values; and Sec. V presents our conclusions. The
Appendix presents details of the construction of a two-state
model of the lowest crystal-field states of the Ho3+ ion, which
is essential for making the sampling of a large number of pairs
with hyperfine interactions computationally tractable.

II. SUSCEPTIBILITY MEASUREMENTS

A single (5 × 5 × 10) mm3 crystal of LiHo0.045Y0.955F4

was characterized using ac magnetic susceptibility in a helium
dilution refrigerator. The magnetic response along the Ising
axis and in the transverse plane was measured using a specially
devised multiaxis ac susceptometer, as shown in Fig. 1. The
sample was probed for a 101 Hz, 2 μT, ac magnetic field
parallel to the Ising axis. A pair of nested inductive pickup coils
allowed for the simultaneous determination of the magnetic
response parallel to and transverse to the Ising axis of the
crystal. The crystal was thermally linked to the cold finger of
the refrigerator via sapphire rods and heavy copper wires.
A multiaxis set of 100 mT Helmholtz coils and an 8 T
solenoid provided dc magnetic fields Hdc parallel to and almost
transverse to the Ising axis, respectively; however, because
of the difficulty in precisely aligning the crystal, we cannot
exclude the possibility of a misalignment of the solenoid from
the transverse axis occurring in a given experiment. For the
experiments quoted here, the misalignment was measured as
0.6◦. The effect on the predicted properties is discussed in
Sec. IV D below.

The measurement probes the diagonal and off-diagonal
components, respectively, of the linear susceptibility tensor,
but evaluated at the nonzero reference field Hdc:

χzz = ∂Mz

∂Hz

∣∣∣∣
H=Hdc

, (1)

χxz = ∂Mx

∂Hz

∣∣∣∣
H=Hdc

. (2)

Figure 2 shows our results for the real part of the
longitudinal and transverse susceptibilities χzz and χxz as
functions of Hdc.18 These experimental results will be com-
pared in Sec. IV D to the predictions derived from the
spin-pair model developed in the following sections. The off-
diagonal linear susceptibility vanishes in the limit where Hdc

is exactly perpendicular to the Ising axis; as we shall see, a

FIG. 1. (Color online) Schematic of the ac vector susceptometer
used in the experiments. The sample sits inside nested pickup coils
A and B, sensitive to magnetic response in the transverse and Ising
directions, respectively. An ac magnetic field along the Ising axis is
supplied by solenoid C; the sample is thermally sunk to the cryostat
cold finger via sapphire rods D and copper wires E. A superconducting
three-axis Helmholtz coil F and an 8 T solenoid magnet G supply dc
magnetic fields. G is almost, but not perfectly, aligned transverse to
the c axis of the sample.

FIG. 2. (Color online) Measured longitudinal (top) and transverse
(bottom) real susceptibility at 70, 110, and 150 mK. (Adapted from
Ref. 18.)
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small component along z enables χxz to capture some of the
nonlinear dependence of M on H and hence to give information
about clustering and correlation effects, as expected from
previous work.12

For ease of comparison with the literature, all computed and
measured susceptibilities in this paper are reported in units of
emu per mole of Ho3+ ions (1 emu mol−1 corresponds to a
susceptibility of 4π × 10−6 m3 mol−1 in SI units). Note that
because of the low concentration of Ho3+, the quoted molar
susceptibilities correspond to relatively small volume suscep-
tibilities (of the order of 0.5 in SI units, or 0.04 emu cm−3 in
the case of χzz, and 2.6 × 10−3 in SI or 2 × 10−4 emu cm−3

for χxz), and the samples are needle shaped and elongated
along the c axis; therefore demagnetization corrections to the
measured susceptibilities are negligible.

The choice of 101 Hz as the measurement frequency
involves a compromise between the difficulty of performing
accurate low-frequency measurements and the desire to ap-
proach the static limit for the real part of χ as closely as
possible. In assessing this, the relevant comparison is with
the characteristic frequency f0 corresponding to the onset of
the sample’s dissipative response; this slows dramatically as
either field or temperature is reduced, but a comparison with
the previously published data17,21 shows that it lies well above
100 Hz, even for temperatures as low as 60 mK, provided that
the transverse field exceeds about 3 kOe (0.3 T).

The imaginary part of the magnetic response was also
measured.18 Unlike the real part, this remains strongly
frequency dependent and, since the frequencies involved
are small compared with all of the energy scales of the
microscopic Hamiltonian, a theoretical treatment depends on
an understanding of the low-frequency relaxation dynamics of
the Ho3+ ions and is not considered in the present paper.

III. Ho3+ PAIR MODEL

To construct a model for the susceptibility of Ho3+ pairs,
we start with the complete microscopic Hamiltonian. The
low-lying states of this Hamiltonian are then used to construct
an effective two-state H , which can be readily diagonalized
for two interacting ions. If the hyperfine interactions from the
microscopic single-ion Hamiltonian are added to this two-state
picture, then the resulting H has 16 states, and the pair Hamil-
tonians are still numerically tractable. Finally, a weighting
scheme is implemented that incorporates contributions for
pairs beyond immediate nearest neighbors.

A. Microscopic Hamiltonian

The electronic Hamiltonian of a single Ho3+ ion in a
magnetic field is

H1 = Hcf − m · B

= Hcf + μBgLj · B, (3)

where gL = 5
4 is the Landé g factor. Hcf is the crystal-field

Hamiltonian, which splits the 17-fold degenerate 5I8 ground
term state of Ho, and is given by

Hcf =
∑

l=2,4,6

B0
l O

0
l +

∑
l=4,6

B4
l (c)O4

l (c) + B4
l (s)O4

l (s), (4)

where Om
l are Stevens’ operators.28 We follow Ref. 29 in

taking the following values for the crystal-field parameters:
B0

2 = −0.06, B0
4 = 3.5 × 10−4, B4

4 = 3.6 × 10−3, B0
6 = 4 ×

10−7, B4
6 (c) = 7.0 × 10−5, and B4

6 (s) = 9.8 × 10−6 meV.
(Note that despite the apparent smallness of the higher-order
crystal-field parameters, the normalization of the crystal-field
operators means that all of these terms in fact make significant
contributions to the spectrum.) The resulting electronic energy
levels are shown in Figs. 3(a) and 4(a) as a function of fields
parallel and transverse to the Ising axis.

The isotropic hyperfine coupling to the local I = 7
2 Ho3+

nuclear spin can be included explicitly by defining

Hhf = Hcf ⊗ IN + AJ · I + μBgLJ · B + μNI · B, (5)

with Jα = jα ⊗ IN and A/kB = 0.039 K or A = 3.4 μeV.
Figures 3(b) and 4(b) show the effect of the hyperfine splitting
on the lowest two crystal-field states [but computed using
the entire single-ion Hamiltonian (5)]. As emphasized by
Ronnow et. al.19 and Schechter and Stamp,11,26 although A is
small compared to the characteristic intra-ion electronic energy
scales, it is comparable to the inter-ion dipolar coupling (see
Sec. IV C). Its effect is to suppress the mixings between the
two terms of the lowest electronic doublet at low temperatures
because the lowest electronuclear spin state in each branch
has the nuclear and electronic moments antialigned and the
nuclear moments cannot be reversed at low orders by any of
the terms in Eq. (5).

The state space required to correctly describe the 5I8 ground
term of Ho3+ in the presence of hyperfine splitting is then
(2 × 8 + 1) × (2 × 7

2 + 1) = 136. The full Hilbert space on
an ion pair therefore has dimensionality 1362 = 18 496, which
is inconveniently large for the repeated exact diagonalizations
required to treat a range of pair geometries and fields. We
therefore proceed by truncating the model to a smaller state
space while preserving the essential behavior.

B. The electronic two-state system

Following Chakraborty et al.,2 we note the large (9.5 K)
gap between the ground-state doublet and the first excited
crystal-field level [Fig. 4(a)]. We therefore construct a Hamil-
tonian describing the low-energy behavior of the ion on
a two-dimensional electronic Hilbert space, covering only
these states. This is a parameterized model in which the
interlevel repulsion, shown in Fig. 4(a), is included explicitly
as described below.

For a given value of transverse field Bx , the following two-
state Hamiltonian is defined:

H (2) ≡ E0(Bx)I2 + 1
2�(Bx)σx + μBgLjeff .B′. (6)

Here, I2 is the identity operator in two dimensions and
σx is a spin-half Pauli operator. E0(Bx) is the midpoint of
the lowest two energy levels and �(Bx) is their splitting
in that transverse field. The effective angular momentum
operators jeff are chosen to reproduce the correct physical
angular momentum matrix elements for the two states; their
decomposition into Pauli operators is discussed in Ref. 2.
Finally, the field B has been replaced with the effective field
B′ ≡ B − Bx î, from which the x component [now represented
by the splitting �(Bx)] has been removed. Further details of
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FIG. 3. Single-ion energy levels as a function of longitudinal magnetic field. (a) Lowest eight electronic crystal-field levels of the 5I8 ground
term as a function of field Bz parallel to the Ising axis. (b) Splitting of the two lowest electronic levels by the hyperfine interaction.

the two-state reduction, and a quantitative comparison of its
spectrum with that of the full Hamiltonian, are given in the
Appendix.

Note that at first sight one might expect that it would also be
possible to construct a three-state model, including the twofold
degenerate ground state as well as the first excited state, which
are relatively well separated from the rest of the spectrum (see
Fig. 3). However, it turns out that level repulsion from the
rest of the spectrum becomes significant at modest external
fields,2 and for this reason it is preferable to parametrize a
two-state effective Hamiltonian operator for every value of the
transverse field in order to incorporate all of these effects.

In the presence of the I = 7
2 hyperfine interaction, the two-

state model becomes

H
(2)
hf ≡ E0(Bx)I16 + 1

2�(Bx)σx ⊗ I8 + μBgLJeff · B′

+μNI · B + AJeff · I, (7)

with Jeff ≡ jeff ⊗ IN. This has a dimensionality of 16, and
thus the Hamiltonian of a pair of spins will have a nu-

merically tractable dimensionality of 256. In this paper,
we therefore retain the full nuclear Hilbert space when
considering the hyperfine interaction, rather than restricting
the model further to the lowest electronuclear doublet as in
Ref. 26.

C. Intra-ion coupling

We neglect the small exchange interactions between the
Ho3+ ions, so, in our model, pairs are coupled only by the
magnetic dipole interaction. Angular momentum operators are
constructed for each spin in a direct product Hilbert space. The
dipole coupling between spins at R1 and R2 is then

H12 = μ0(μBgL)2

R3
12

∑
αβ

(
δαβ − 3Rα

12R
β

12

R2
12

)
J (1)

α J
(2)
β , (8)

where R12 ≡ R2 − R1 and J (i)
α is component α of the total

angular momentum of ion i. The total Hamiltonian of the
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FIG. 4. Single-ion energy levels as a function of transverse magnetic field. (a) Lowest three electronic crystal-field levels in the presence
of a field Bx transverse to the Ising axis. (b) Splitting of the two lowest electronic levels by the hyperfine interaction.
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pair is

Hpair = H1 + H2 + H12. (9)

Note that for a given pair, the spin J
(2)
β at site 2 gives rise

to a pair interaction H12 containing an effective field at site 1,

B
(1)
eff,α = μ0(μBgL)

R3
12

∑
β

(
δαβ − 3Rα

12R
β

12

R2
12

)
J

(2)
β , (10)

which in general contains a transverse component. Strictly,
therefore, the field-dependent parameters in Eq. (6) should
be computed incorporating this component. However, in
practice, this dependence is negligible for the applied fields
of interest because the characteristic scale of B(1) is, at most,
μ0μBgL|J (2)|/a3 = 29 mT, while the experimental variation
of χ is on the scale of fields that can mix the Ising doublet, of
the order of 1 T (see Figs. 2 and 4).

D. Computing the susceptibility

The isothermal susceptibility is defined as

χαβ ≡ 1

V

(
∂〈mα〉
∂Hβ

)
T

, (11)

where m is the total magnetic moment and V is the sample
volume. We apply this by computing the field-dependent
eigenstates of the pair Hamiltonian (9) and computing

χαβ = − 1

kBT ZV

∑
i

exp(−Ei/kBT ) 〈i|�m̂α|i〉 〈i|�m̂β |i〉

+ 1

ZV

∑
i

exp(−Ei/kBT )

×
∑

j

′2�
[ 〈i|m̂α|j〉 〈j |m̂β |i〉

Ei − Ej

]

= χLangevin + χVanVleck, (12)

where the primed sum goes over all states i and j such that
Ei 	= Ej , � denotes the real part, and �mα ≡ mα − 〈mα〉.
Matrix elements between degenerate states have been made to
vanish by a choice of basis such that m̂β is diagonal in each
degenerate subspace. Numerically we assume states i and j

are degenerate if Ej − Ei < ε, which is a small value chosen
such that the susceptibility is not sensitive to variations in ε;
in these results, we used ε = 10−7 meV. Note that in applying
Eq. (11), we assume that the Ho3+ ions remain in thermal
equilibrium over the time scales of the experiment, i.e., that all
thermalizing relaxation processes operate on a time scale that
is fast compared to the measurement.

E. A pair-ensemble weighting scheme

We wish not only to examine the behavior of specific
pairs of spins, but also to calculate the average response
for a distribution of spin pairs corresponding to the physical
LiHo0.045Y0.955F4 crystal. We proceed by assuming that at this
dilute concentration the behavior of each spin is affected only
by the closest spin, and compute a weighted susceptibility.
This is determined by computing the susceptibility of an
exhaustive sample of pairs of spins up to some cutoff distance
rc and weighting each term by the probability that in a

randomly populated set of sites in a lattice with mean fractional
occupancy x, the chosen spin s2 would be the nearest occupied
site to the reference spin s1. If all of the sites were at different
distances, then this would be given by the probability that no
sites nearer to s1 than s2 are occupied, while the site s2 itself
is occupied. The weighting for a site sj would then be

wj = x(1 − x)Nj , (13)

where Nj is the number of sites closer to s1 than sj . However,
in practice, the sites s2 occur in “shells” with equal distance
from s1; if there are nj sites in shell j , we ascribe a weighting
to each site which is a fraction 1/nj of the probability that
there is at least one neighboring spin anywhere in the shell:

wj =
[

1 − (1 − x)nj

nj

]
(1 − x)Nj . (14)

The cutoff distance rc is always chosen such that the
probability of the nearest occupied site s2 being more than
rc from s1 does not significantly exceed 10−3; the required rc

therefore increases as x falls. For the calculations presented
here, we included 22 shells of neighbors containing 146 ions,
corresponding to rc = 2.58 a = 13.4 Å. At the experimental
spin concentration (x = 0.045), the probability that the pair
separation exceeds rc is then 1.20 × 10−3.

IV. RESULTS

A. Contributions of individual pairs

The magnetic response of a pair of Ho spins depends
strongly on their separation and orientation. Figure 5 shows
the Ising-axis and transverse response of all pairs that make
a significant contribution to the cluster ensemble. Although
these plots are of illustrative value in demonstrating the wide
range of behaviors arising from spin pairs, it is more useful
to examine how these different responses contribute to the
ensemble average. Figure 6 shows these averages by plotting
the susceptibilities of each pair using the weighting wi as a
color map. Susceptibility bands appear in this weighted map
due to particular closely neighboring spin pairs. It can also be
seen that for every pair of spins with a transverse susceptibility
χxz(Bx) = f (Bx), there exists a pair with χxz(Bx) = −f (Bx).
It thus follows that an ensemble average, as defined in
Sec. III E, will give a zero value of χxz for all values of
field Bx . As discussed below, the measured response is well
described by a small (0.6◦) tilt of Bx , producing a polarizing
field along the Ising axis. A comparison of the weighted
susceptibilities with and without the incorporation of hyperfine
effects suggests that the primary effect of the hyperfine term is
to renormalize the transverse field; this behavior is discussed
in more detail in Sec. IV C below.

B. Pair orientation and response

Depending on the relative orientation, the dipole cou-
pling can be either ferromagnetic or antiferromagnetic. A
ferromagnetic pair has a susceptibility χzz which diverges
in the limit of low temperatures and a zero transverse
field, whereas an antiferromagnetically coupled pair has
vanishing susceptibility in the same limit. As can be seen
from Fig. 2, antiferromagnetic behavior dictates the measured
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FIG. 5. Computed susceptibilities (in emu mol−1) for all pairs
of spins at T = 70 mK, with hyperfine interactions included.
(a) Diagonal response χzz. (b) Off-diagonal response χxz.

response of the sample of LiHo0.045Y0.955F4, and, as shown
in Fig. 5, certain pairs show a qualitatively similar magnetic
response. As we shall see below, however, their contribution
to the ensemble average used in this paper is not sufficient
to make the overall average susceptibility agree with the
measured one.

The relation of this behavior to the crystal structure can be
understood from Fig. 7, showing the zero-field susceptibility
at T = 70 mK of a pair of Ho3+ ions separated by a distance r

in the a-b plane and z on the c axis. The crossover between the
ferromagnetic and antiferromagnetic couplings occurs along
the line z/r = 1/

√
2; the strongly antiferromagnetic pairs

are located in-plane at (1,0,0) and (2,0,0) and the most
strongly ferromagnetic pair is the nearest-neighbor pair at
( 1

2 ,0, 1
4 ). Note that the on-axis pair (0,0,1) is more weakly

ferromagnetic at this temperature, owing to the larger spatial
separation.

C. The effect of the hyperfine interaction

We now examine the role that hyperfine interactions play
in determining the behavior of the system. It is important
to understand whether these effects produce a qualitative
change in the behavior, as the expansion of this model
to n = 3 and larger clusters of spins becomes numerically
impractical if the hyperfine splittings are essential. Figure 8

FIG. 6. (Color online) Contribution of the various pairs to the
ensemble-averaged functions χxz(Bx) (top) and χzz(Bx) (bottom).
The color scale shows the total weighted contribution of all pairs to a
given susceptibility at a given field. Left and right plots, respectively,
show the effects of omitting and including the hyperfine term in
the Hamiltonian. The temperature was T = 70 mk and the field was
applied along (1,0,0). Susceptibilities are given in emu mol−1.

shows susceptibilities for high-weight spin pairs both with
and without hyperfine effects. [Note that pairs such as ( 1

2 ,0, 1
4 )

and (0, 1
2 , 1

4 ), which are equivalent at zero field, become
inequivalent for nonzero fields, except when the field lies
along symmetry directions such as (1,1,0).] We see that the
primary role of the hyperfine interactions is to renormalize the
applied transverse field, rather than to introduce fundamentally
different behavior. This in turn suggests that useful insights
may be derived from considering larger spin clusters in the
absence of the hyperfine splittings. It should be noted, however,
that the strongly ferromagnetic ( 1

2 ,0, 1
4 ) pair does not show

this renormalization when it is oriented so that the projection
of the separation vector into the ab plane lies along the
transverse-field direction.

D. The ensemble-averaged susceptibilities

Figure 9 shows the experimental and ensemble-averaged
longitudinal susceptibility χzz. The left panel shows computed
and experimental results at temperatures of 70, 110, and
150 mK. The computed results include the effect of the hyper-
fine response, but omit in this panel the effect of tilting the field
Bx . The model captures the overall temperature dependence
of the data, but it cannot account for the low-field suppression
of the susceptibility because the average is dominated by
the contributions of ferromagnetic and effectively uncoupled
pairs.

The right panel of Fig. 9 shows the effects of varying
the parameters of the model at a constant T = 70 mK. The
dashed curves show the result of removing the hyperfine
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(a) (b)

FIG. 7. (Color online) (a) The effect of geometry on χzz, computed in the absence of hyperfine interactions with zero transverse field and
temperature T = 70 mK. The response is plotted for a pair of spins with axial separation z and in-plane separation r (units of lattice para-
meter a), with the marked points showing the locations of various near neighbors. The susceptibility is shown in units of emu/mol Ho. (b) View
of the structure showing pairs marked in (a).

terms; for most of the field range, the renormalization seen
in the individual pair susceptibilities is visible. At low field,
the strongly ferromagnetic ( 1

2 ,0, 1
4 ) pairing dominates, and no

renormalization is seen. The dotted curve shows the result
of keeping the hyperfine effects and adding a 0.6◦ tilt to the
applied field, with the attendant slight polarization along the
Ising axis. We can see that this improves the match between
the high-field behavior of the model and the experiment.

FIG. 8. (Color online) The magnetic response at T = 70 mK of
certain important spin pairs, using a Hamiltonian which incorporates
hyperfine effects (solid lines) and which omits these effects (dotted
lines). The primary effect of adding the hyperfine splitting is to
impose an effective renormalization of the transverse-field scale. The
transverse field is applied along the (1,0,0) direction.

Figure 10 displays similar information for χxz. Note that
owing to the symmetry observed in Fig. 5(b), the ensemble
average of χxz vanishes in the absence of a polarizing field.
Thus, the only appropriate comparison is between the tilted-
field computation and the measured value, as shown in the
left panel of Fig. 10 for both single-ion and ensemble-pair-
average computations. It is clear that the tilt is responsible
for the measured effect, with the pair average providing a
better match to the measured susceptibility than a single-ion
calculation. The effect of the hyperfine response is the same
renormalization of the field seen in the longitudinal response.
The right panel of this figure shows the effect of temperature
on both the measured and the pairwise average χxz.

V. CONCLUSIONS

We have developed a spin-pair model for understanding
the behavior of dilute LiHoxY1−xF4. A weighted ensemble
average of all spin pairs reproduces the high-transverse-field
experimental susceptibility, but not the low-field antiferro-
magnetic character of the data. Nonetheless, the rise in the
longitudinal susceptibility at a transverse field of around 1 T,
which looks like a signature of a spin gap, does correspond
to the calculated susceptibility for certain antiferromagnetic
pairs. This suggests that a full understanding of the system
requires the treatment of larger clusters, an extension which
should be numerically feasible because of the observation
that the primary effect of the hyperfine splitting in the dc
susceptibility is to renormalize the transverse field. This will
allow extension of the model to larger clusters of spins
using the simplified two-state description for individual spins,
rather than a full 16-state description. Ultimately, to reach the
thermodynamic limit, it would still be necessary to generalize a
scaling approach, such as the real-space renormalization group
of Ref. 9, to include finite transverse fields.

Recent theoretical studies of the pure material (x = 1), in
which a two-state reduced Ising model on a lattice is studied

014420-7



C. M. S. GANNARELLI et al. PHYSICAL REVIEW B 86, 014420 (2012)
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χ zz
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FIG. 9. (Color online) Measured and computed χzz (in units of emu/mol Ho). Left panel: Computed (red, heavy curves) and measured
(blue, light curves) susceptibility. Solid, dotted, and dashed curves are T = 70, 110, and 150 mK, respectively. Right panel: The effect of tilting
the transverse field (dotted curve) and of omitting the hyperfine interaction (dashed curve) at T = 70 mK. Solid red (heavy) and blue (light)
curves again show the computed (with hyperfine, no tilting) and measured susceptibilities, respectively.

by classical Monte Carlo approaches,2,16 are complementary to
the approach presented here because they include long-range
dipolar physics missed by our cluster expansion, but at the cost
of ignoring quantum corrections to the behavior of individual
pairs. It is interesting that these classical calculations disagree
with experiment in some significant respects, especially at low
transverse fields.30 It is still not clear whether this disagreement
originates within the classical approximations made or in
the underlying crystal-field model;16 a scaling extension to
our method, which should be most rapidly convergent in
the high-dilution limit, could give additional insight into this

problem. Such an extension would also sample somewhat
different regions of the cluster configuration space, since Fig. 7
shows that the antiferromagnetic region extends considerably
farther in distance than does the ferromagnetic region. This
space is not sampled significantly in the pairwise model, owing
to the rapid fall-off of the weighting function wi with distance,
but larger clusters can sample this interaction region far more
extensively.

Additionally, it would be useful to consider the dynamics
of the magnetic response at the lowest fields, where its
characteristic time scale exceeds that of the experiments, in

0 0.5 1 1.5 2

Transverse field (T)

0

0.1

0.2

0.3

0.4

0.5

χ xz

0 0.5 1 1.5 2

FIG. 10. (Color online) The apparent transverse susceptibility (in emu mol−1) resulting from a transverse field tilted by 0.6◦. Left panel:
Measured susceptibility (solid blue, thin curve) is contrasted with the susceptibility of a single ion in a tilted field (dashed curves), and the
pairwise average susceptibility (dotted curves). The heavy red curves include hyperfine effects. The thin gray curves do not. Right panel: The
effect of temperature. Measurements are shown as blue (light) curves; calculations as red (heavy) curves. Temperatures are 70 (solid curve),
110 (dotted curve), and 150 (dashed curve) mK.

014420-8



CONTRIBUTION OF SPIN PAIRS TO THE MAGNETIC . . . PHYSICAL REVIEW B 86, 014420 (2012)

40 20 20 40
Hx kOe

5.10

5.15

5.20

5.25

5.30

5.35

5.40

Jz

40 20 20 40
Hx kOe

4

2

2

4
Jx

40 20 20 40
Hx kOe

2

1

1

2

Jx

(a) (b) (c)

FIG. 11. (Color online) Comparison of expectation values of electronic spin operators from a two-level fit and from a full crystal-field
calculation, as a function of transverse field. (a) 〈Jz〉 in the basis state |↑〉 (and hence also the off-diagonal matrix element of Jz between the
states of the doublet); (b) expectation value of Jx in the lower state of the doublet; (c) expectation value of Jx in the upper state of the doublet.
In all cases, solid points are the full results and the lines are the two-level fits.

order to improve the agreement between experiment and theory
in that region.
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APPENDIX: THE TWO-STATE REDUCTION

The prescription for the construction of the low-energy
subspace is similar to that described in Ref. 2. The mean energy
E0(Bx) and the splitting �(Bx) are tabulated as a function of

Bx . The eigenstates |↑〉 and |↓〉 of the two-state pseudospin
operator σz are then taken as

|↑〉 = 1√
2

(|0〉 + eiθ |1〉) ; |↓〉 = 1√
2

(|0〉 − eiθ |1〉) , (A1)

with the phase θ chosen to ensure that |↑〉 and |↓〉 also
diagonalize the physical operator Jz (so the representation of
Jz within this subspace corresponds to a multiple of the Pauli
operator σz). The single-ion electronic Hamiltonian is then
given by Eq. (6). Figure 11 shows how the matrix elements of
the spin operators are reproduced in the fit.

By construction, this two-level model gives an accurate
description of a single ion at temperatures well below about
10 K (where excitations outside the ground-state doublet
become important). We now need to check that it also gives
an adequate representation of pairs, where the field on each
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FIG. 12. (Color online) Comparison between the full eigenvalue spectrum for: (a),(c) an ion pair separated by (a,0,0) and (b),(d) the
two-state reduction. (a) and (b) show the four lowest electronic states only; (c) and (d) include the hyperfine interaction with the nuclear states,
showing the 256 corresponding hyperfine levels.
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ion contains a contribution from the other spin as well as
from the external field. Figure 12 shows the lowest energy
levels computed from a full electronic calculation and from

the two-level system, both with and without the coupling to
the nuclear spins; it can be seen that the splittings arising from
the dipolar interactions of the pair are accurately reproduced.
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