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A low-temperature intervening metallic regime arising in the two-dimensional superconductor-insulator 
transition challenges our understanding of electronic fluids. Here we develop a gauge theory revealing 
that this emergent anomalous metal is a bosonic topological insulator where bulk transport is 
suppressed by mutual statistics interactions between out-of-condensate Cooper pairs and vortices and 
the longitudinal conductivity is mediated by symmetry-protected gapless edge modes. We explore 
the magnetic-field-driven superconductor-insulator transition in a niobium titanium nitride device and 
find marked signatures of a bosonic topological insulator behavior of the intervening regime with the 
saturating resistance. The observed superconductor-anomalous metal and insulator-anomalous metal dual 
phase transitions exhibit quantum Berezinskii-Kosterlitz-Thouless criticality in accord with the gauge 
theory.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

An anomalous metallic regime intervening between the su-
perconductor and insulator has been reported in a wide va-
riety of two-dimensional electronic systems experiencing the 
superconductor-to-insulator transition (SIT) [1–15], and is often re-
ferred to as “Bose metal” [16]. Despite decades of dedicated studies 
[17,18], its nature remains unclear and poses a challenge to our 
understanding of electron fluids. The very existence of a 2D metal 
is at odds with the 2D orthodoxy, as conventional theories expect 
a direct quantum SIT with no intermediate metallic phase.

Yet a gauge theory of Josephson junction arrays (JJA) at T = 0
[19] predicted a metallic phase intervening between the supercon-
ductor and superinsulator at T = 0. Extending the approach of [19]
to finite temperatures, enabled us to develop a field theory of the 
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SIT [20] and unravel the fundamental role of the infrared-dominant 
Aharonov-Bohm-Casher (ABC) mutual statistics interactions that 
determine the SIT phase structure. Here utilizing the technique 
of [20], we construct a gauge theory of the Bose metal (BM) in 
which strong quantum fluctuations prevent Bose condensation of 
both vortices and Cooper pairs (CP) and their mutual statistics in-
teractions, see Fig. 1, induce a gap in their fluctuation spectrum, 
quantified by the Chern-Simons mass, mCS [21], preventing bulk 
transport. The longitudinal conductance is mediated by symmetry-
protected U(1)�ZT

2 edge modes, where ZT
2 denotes time-reversal 

symmetry. Hence the BM realizes the long sought [22] bosonic 
topological insulator. We demonstrate that at T = 0 the transitions 
between the superconductor and BM and between the BM and 
superinsulator are the respective quantum Berezinskii-Kosterlitz-
Thouless (BKT) transitions. We report transport measurements on 
niobium titanium nitride (NbTiN) and van der Waals heterostruc-
tures of twisted double bilayer graphene (TDBG) films offering 
strong support to the proposed picture.
le under the CC BY-NC-ND license 
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Fig. 1. Mutual statistics interactions. a: A charge (blue ball) evolves along the 
Euclidean time axis and is encircled by a vortex (red). The two trajectories are 
topologically linked since one cannot decouple the charge trajectory from the cir-
cle without breaking it. This linking encodes the Aharonov-Casher effect. b: A dual 
situation in which a vortex (red ball) evolves along the Euclidean time direction 
and is encircled by a charge. This linking represent the Aharonov-Bohm effect. c:
The linked charge-anticharge and vortex-antivortex fluctuations representing cou-
pled Aharonov-Bohm-Casher interactions which are encoded in the Chern-Simons 
term in the action. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

Phase structure of the SIT

We consider a two-dimensional superconducting film in the 
vicinity of the SIT at temperatures T � Tc0, where Tc0 is the mean-
field temperature of formation of Cooper pairs with the infinite 
lifetime. Near the SIT, a film acquires self-induced electronic gran-
ularity which, conjectured in [23,24], became a paradigmatic at-
tribute of the SIT [25,26]. This implies that in the critical vicinity 
of the SIT the 2D superconducting film can be perfectly modeled 
as the granular superconductor or JJA. The latter harbors interact-
ing elementary excitations, Cooper pairs which in this case can 
be considered as charged bosons [27,28] and vortices with char-
acteristic energies 4EC and 2π2 E J , respectively, EC and E J being 
the charging energy and Josephson coupling energy of a single 
junction. The mapping on the real film is achieved by replace-
ment 4EC → e2

q = 4e2/� and 2π2 E J → e2
v = �2

0/λ⊥ where e is the 
electron charge (we use natural units, c = 1, h̄ = 1, restoring phys-
ical units when necessary), �0 = π/e is the flux quantum, the 
ultraviolet (UV) cutoff of the theory is defined as � � min{d, ξ}, 
with d and ξ being the thickness of the film and the supercon-
ducting coherence length, respectively, and λ⊥=λ2

L /d is the Pearl 
length of the film, with λL being the London penetration depth of 
the bulk material. Note that in a superconducting film the mean 
distance between Cooper pairs is much less than the size of a sin-
gle Cooper pair, hence, strictly speaking, the latter are not bosons. 
However, since in a superconducting film the Cooper pair conden-
sate maintains phase coherence, one can still describe the ensem-
ble of Cooper pairs interacting with vortices and an ensemble of 
bosons [28,29]. Furthermore, since E J ∼ g�, where � is the gap in 
a superconducting granule in the JJA and g is the dimensionless 
tunneling conductance between the adjacent granules, the model 
implicitly takes into account dissipation effects.

The behavior of an ensemble of interacting vortices and CP 
near the SIT is governed by the free energy which we derive 
from the mixed Chern-Simons action [20], explicitly accounting for 
the ABC effects [21,30]. To that end we integrate out the gauge 
fields and arrive at the free energy of a system of strings carrying 
electric and magnetic quantum numbers Q and M and represent-
ing the Euclidean trajectories of charges and vortices on a lattice 
of spacing �, see Methods and Supplementary Information (SI): 
F = (

Q 2/g + gM2 − 1/η
)
μeηN , where the string length L = N�

and g = ev/eq = (π/e2)
√

�/λ⊥ is the dimensionless tuning param-
eter with g = gc = 1 corresponding to the SIT. In experiments on 
films experiencing the disorder-driven SIT, the tuning parameter is 
the dimensionless conductance, g = RQ/R0, where RQ = h/4e2 is 
the quantum resistance for CP, h is the Planck constant, and R0

is the sheet resistance of the film measured at predefined stan-
dard conditions. The parameter g describes thus the tuning of the 
SIT not only by regulating disorder, but implicitly also by varying 
dissipation [31] (in JJA g = √

(π2/2)(E J/EC)). The dimensionless 
parameter η describes the strength of quantum fluctuations. Near 
the SIT, where eq ≈ ev, η acquires the form (in physical units)

η = 1

α

π2�

μeλ⊥
G

(
π�

αλ⊥

)
, (1)

where α = e2/(h̄c) ≈ 1/137 is the fine structure constant, μe is the 
positional entropy (see SI), and G is the diagonal element of the 3D 
Green function describing electromagnetic interactions screened by 
the CS mass, see SI. Identifying the UV cutoff with the supercon-
ducting coherence length ξ , yields the geometric factor as d/(κλL)

where κ = λL/ξ is the Landau-Ginzburg parameter.
Bose condensation of charges and/or vortices means prolifera-

tion of strings of an arbitrary size and occurs if F is negative, i.e. 
if

Q 2/g + gM2 < 1/η . (2)

The phase emerging at particular values of g and η is determined 
by the geometric condition that the nods on a square lattice of in-
teger electric and magnetic charges, {Q , M}, fall within the interior 
of an ellipse with semi-axes rQ = (g/η)1/2 and rM = 1/(gη)1/2, see 
Fig. 2(a–d). The Bose metal emerges if none of the condensates can 
form i.e. if simultaneously

g/η > 1 and gη > 1 . (3)

This relation resolves the enigma of why some materials exhibit 
a direct SIT while others go through the intermediate Bose metal 
phase. The direct SIT at g = 1 corresponds to η < 1; tuning g , one 
crosses the region η < g < 1/η, where both vortex and Cooper 
pair condensates coexist, i.e. the direct SIT is a first-order quan-
tum transition. The Bose metal phase opens up for η > 1 and is 
favored by thicker films and for materials with low κ . Its domain 
is delimited by the lines g = η and g = 1/η. As we show below, 
these lines represent quantum BKT transitions [32,33], and g = 1, 
η = 1 is a quantum tri-critical point.

To describe the magnetic-field-driven SIT in systems with g ≈ 1
i.e. which are already on the brink of the SIT, we introduce the 
frustration factor f = B/B� , where B� is the magnetic field corre-
sponding to one flux quantum �0 = π/e per unit cell. Then the ex-
ternal magnetic field shifts M → M + f and modifies the conden-
sation conditions, see Fig. 2e,f. Setting g = 1 + ε , with ε 	 1, one 
finds for a direct SIT at η < 1, fc = (1/2)(g2 − 1) ≈ ε . At η > 1, but 
still close to the tri-critical point, one sets g = η+ε and obtains for 
the superconductor-BM transition fc = √

ε/η3/2 = (g − η)1/2/η3/2

see SI for details.

The nature of the intermediate Bose metal

The response of a BM to an applied field is determined by its 
effective electromagnetic action, obtained by integrating out the ef-
fective gauge fields in the general Chern-Simons action (see Meth-
ods), which (without any loss of generality) assumes the simplest 
form in the relativistic case

Seff
(

Aμ

) = g

2

(
q̄e

2π

)2

d

∫
d3x Aμ

(
−δμν∇2 + ∂μ∂ν

)
Aν , (4)

where Aμ is the external electromagnetic potential, the dimen-
sionless charge unit q̄ = 2 for CP and the renormalized effective 
charge q̄eeff = q̄e

√
g . Accordingly, the charge current jμ is found as 

jμind = (δ/δAμ)Seff (Aν) = g (q̄e/2π)2 d ∂ν F μν , with Fμν = ∂μ Aν −
∂ν Aμ . One sees that only the derivatives of the external fields, but 
not their constant parts, induce a current. Therefore, in the bulk, 
both the longitudinal and the quantum Hall components of the lin-
ear conductance vanish at T = 0.
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Fig. 2. Graphic representation of the conditions for realizing different phases near the SIT. a: Superconductor: Strings with electric quantum numbers condense. b: Superin-
sulator: Strings with magnetic quantum numbers condense. c: Coexistence of long electric and magnetic strings near the first-order direct transition from a superconductor 
to a superinsulator. d: Bosonic topological insulator/Bose metal: all strings are suppressed by their high self-energy. e: Phase transitions induced by an external magnetic 
field: Direct, magnetic-field-induced transition from a superconductor to a superinsulator for η < 1. f: Magnetic-field-driven transition from a superconductor to a topological 
insulator for η > 1.
However, the Chern-Simons effective action is not invariant un-
der gauge transformations not vanishing on the sample boundaries. 
To restore the gauge invariance, one has to add edge chiral bosons 
[34]. This operation is an exact analogue to the description of the 
edge modes in the quantum Hall effect [35]. The resulting edge 
action gives rise to the equation of motion, see Methods and SI:

vbρ = q̄eeff

2π
V , (5)

where vb is the velocity of the edge modes and V is the applied 
voltage. Using I = q̄eeff vbρ , one finds the longitudinal sheet resis-
tance

R� ≡ V

I
= RQ

g
, (6)

which is in a full concert with the early elegant charge-vortex du-
ality arguments [31,36] leading to R� = RQ [36,37] at the SIT. In 
experiments, R� may well deviate from RQ upon departure from 
the SIT, but the standard SIT scaling analysis yields the conver-
gence of R�(T → 0) to RQ [2,3,15] upon approach to the pre-
sumed quantum critical point. At zero temperature and η > 1, 
the Bose metal forms between the points g = 1/η and g = η. 
Hence its sheet resistance is lower than the quantum resistance, 
R� < RQ, on the superconducting side, g > 1, and larger than 
the quantum resistance, R� > RQ, on the insulating side, g < 1, 
with equality achieved at g = 1. Duality is realized in the form 
RQ/R� ↔ R�/RQ when g ↔ 1/g , generalizing the universality ar-
guments of [31,36,37] onto the Bose metal.

Bulk transport suppressed by the topological gap and ballistic 
symmetry-protected edge modes are the hallmark of topological 
insulators. In our case, while the flux quantum is π/e, the charge 
is carried by bosonic excitations of charge 2e. The BM is thus an 
integer bosonic topological insulator with edge modes protected 
by the U(1) �ZT
2 symmetry. This is one of the generic integer 

topological phases recently classified in [38,39]. The quantum fluc-
tuations parameter η, the suppression of bulk conductances by the 
topological CS mass mCS, and equations (5, 6) for the longitudinal 
resistivity mediated by the U(1) �ZT

2-symmetry protected gapless 
edge states are the central results of our work.

Shown in Fig. 3a is a 3D sketch of the phase diagram com-
prising the BM near the SIT, with the tuning parameter g denot-
ing either the conductance, or magnetic field or gate voltage in 
a proximity array [15]. The BM forms at η > 1 and occupies the 
domain between the charge- and vortex-BKT transition manifolds. 
Fig. 3b is a = 0 cut of the phase diagram. At η < 1, the direct SIT 
is a first-order transition. The lines η = 1/g at η > 1, g < 1 and 
η = g at η > 1, g > 1, denote quantum BKT transitions between 
superinsulator and BM and between BM and superconductor, re-
spectively, see SI for detail. Shown in Fig. 3c is g, T -phase diagram 
corresponding to some η = 1. Quantum transitions between the 
superinsulator and the BM and between the superconductor and 
the BM at T = 0 occur at g = g1(η), and g = g2(η), respectively. 
Duality requires g2 = 1/g1. By self-duality, the remnant of the SIT 
can still be identified as g = 1 line at which R�(T ) = R Q . And 
although there is no phase transition anymore at this point, the 
BKT criticality is still expected in the vicinity of the tricritical point 
g = 1, η = 1, see below.

Stability of the bosonic topological insulator

To unravel the mechanism preventing the condensation of CP 
and ensuring stability of the Bose metal, we recall that the par-
ticle number operator Nq and the U(1) phase ϕ , form a pair 
of canonically conjugate variables, since Nq is the generator of 
global U(1) charge transformations. Only two symmetry realiza-
tions are allowed in infinite systems. Either (i) Nq is sharp, �Nq =
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Fig. 3. Phase structure of the SIT. a: Three-dimensional sketch of the phase diagram near the SIT in (g, η, T ) coordinates. The red and blue surfaces represent the loci for 
charge and vortex BKT transitions, the green “cloud” depicts the domain of the Bose metal, which is shown (see text) to be a bosonic topological insulator, hence marked as 
TI. b: Zero temperature cut of the phase diagram. c: A cut at η > 1, representing the schematic phase diagram for strong quantum fluctuations (not to scale) near the SIT. 
The topological insulator (TI) state is separated from the superconducting (SC) and superinsulating (SI) states by vortex- and charge-BKT transitions respectively (magenta 
and blue solid lines respectively). In the vicinity of the TVBKT line, R�<RQ and the system exhibits metallic behavior which crosses over smoothly into the thermally activated 
insulating behavior upon decreasing g shown by the change of the color. At g = 1, R� = RQ and the resistance keeps increasing, R�>RQ, towards the TCBKT line. The 
yellow strip depicts the domain of thermally activated resistance, which crosses over to BKT critical behavior on approach to TCBKT. The SIT-driving values g1 and g2 that 
mark superinsulator-Bose metal and superinsulator-Bose metal quantum transitions satisfy the duality relation g2 = 1/g1. The parameter g can be either the dimensionless 
conductance of the film, or magnetic field, or gate voltage in the gate-driven SIT.
√

〈(Nq − N̄q
)2〉 = 0, and ϕ is undefined, �ϕ = ∞ so that the 

U(1) symmetry is linearly realized, or (ii) Nq does not annihilate 
the vacuum, �Nq = ∞, ϕ is sharp, �ϕ = 0 and the global U(1) 
symmetry is spontaneously broken. When ϕ is a massless field, 
these two possibilities define the zero-temperature superinsulators 
and superconductors [24,40]. However, because of the topological 
Chern-Simons interactions, the charge and vortex densities do not 
obey anymore the Gauss-law constraints generating the two U(1) 
symmetries, and the third possibility, �Nq = 0, ϕ massive, arises. 
We find that in the Bose metal, the equal-time quantum correla-
tion functions in the ground state are given by (see SI)

〈 j0(x) j0(y)〉 ∝ exp
(
− |x−y|

ξcorr(g/g1)

)
〈φ0(x)φ0(y)〉 ∝ exp

(
− |x−y|

ξcorr(g2/g)

)
, (7)

where j0 and φ0 are the charge and vortex densities, respectively 
and

ξcorr(x) ∝ exp(const/
√|x − 1|),

is the BKT [32,33] correlation length with x set by the quan-
tum coupling constant g and its critical point gc. Accordingly, 
the two dual transitions, superconductor-BM and superinsulator-
BM are quantum BKT transitions. Another far-reaching implication 
of Eq. (7) is that charges and vortices form an intertwined liquid 
comprising fluctuating macroscopic islands with typical dimen-
sions ξ(g/g1) and ξ(g2/g), respectively. The emergent texture is 
referred to as the self-induced electronic granularity [40]. The as-
sociated characteristic frequency of the BM quantum fluctuations is 
ω = v/ξcorr. While the exact expression for the correlation length 
in the ground state is not yet available, it must lie in the interval 
ξ < ξcorr < h̄/(vmCS), where the upper bound is the length scale 
associated with the CS gap to the first excited state. We obtain 
thus for the frequency range ω > mCS v2/h̄. Using mCS = h̄eqev/π v
and ev ≈ eq at the center of the BM phase, we find ω > αv/d. 
This is the typical frequency associated with the electrostatic en-
ergy h̄αv/d of a Cooper pair. For the NbTiN parameters [41] d = 10
nm and v/c = 1/

√
ε = 1/

√
800, we find ω > 7 THz.

Experiment

Transport measurements are taken on NbTiN 10 nm thick films 
prepared by the atomic layer deposition (ALD) technique based 
on sequential surface reaction, step-by-step film growth. The films 
were lithographically patterned into bars, see Fig. 4a, and resistiv-
ity measurements were performed at sub-Kelvin temperatures in 
helium dilution refrigerators (see the details of the sample prepa-
ration, geometry, measurement technique and characterization in 
[41]). All the resistance measurements were carried out in the lin-
ear regime. In our measurements we used a system of filters built 
into the cryostat that cuts off the signal above 100 kHz and a 
system of external filters that cut off the signal above 30 Hz. In 
addition, wires with high-quality shielding were used for measure-
ments, as well as individual grounding of the measuring circuit. 
The magnetic field dependence of the saturation resistance, see 
Fig. 4b, rules out the possibility that the metallic state results from 
inadequate filtering. Since the expected frequency of typical quan-
tum fluctuations responsible for BM behaviour exceeds by several 
orders of magnitude the system of filtration, this is effective for 
noise elimination but does not affect the relevant physics at higher 
frequencies. Shown in Fig. 4a is the sketch of the two-terminal 
setup. Fig. 4b presents the log-log plot of the low-temperature 
part of R�(T ) across the magnetic field-driven SIT. At magnetic 
fields B � 0.04 T, R� saturates at lowest measured temperatures 
to the magnetic field-dependent value spanning about an order 
of magnitude in sheet resistance, from R� � 1 k� to R� � 20
k�, suggesting metallic behaviour across this range. At fields above 
B � 0.011 T, the R�(T ) dependence develops a minimum. Above 
B � 0.04 T, the curve shows a trend to an insulating upturn, 
and, as soon as B exceeds 0.16 T, R�(T ) exhibits pronounced in-
sulating behaviour. Plotting R�(B) isotherms, see panel Fig. 4c, 
exposes three sequential crossing points BSB = 0.011 ± 0.001 T, 
BSI = 0.039 ± 0.001 T, and B IB = 0.16 ± 0.01 T. The correspond-



M.C. Diamantini et al. / Physics Letters A 384 (2020) 126570 5

Fig. 4. Temperature and magnetic field dependencies and quantum BKT scaling of R�(T , B) in the vicinity of the magnetic field-driven SIT. a: The device scheme and a setup 
for the two-terminal resistance measurements sketch. b: Sheet resistance, R� , as function of temperature, T , spanning the anomalous metallic regime in the magnetic field 
range from 0 T to 0.25 T. The residual resistance grows with decreasing g and becomes R� = RQ at g � 1. c: Sheet resistance, R� , as function of B for different temperatures 
exhibits three crossing points (marked by arrows) at BSB = 0.011 T, B IB = 0.16 T, and BSI = 0.039 T, corresponding to superconductor-BM, BM-superinsulator, and the SIT 
transitions, respectively. The crossing points satisfy the duality relation BSB/BSI = BSI/B IB with great accuracy. d: Quantum BKT scaling near the BSB critical point. e: The BKT 
scaling for the remnant of the SIT. f: Quantum BKT scaling near the B IB critical point.
ing resistances are RSB = 3.63 ± 0.01 k�, RSI = 6.57 ± 0.01 k�, and 
RSI = 11.9 ± 0.1 k�.

Temperature dependencies of the resistance R(T ) of TDBG mea-
sured at optimal doping in the presence of the magnetic field, B || , 
parallel to the film indicates the field-induced SIT, see [42], where 
also the details of fabrication of TDBG devices and measurements 
protocol can be found. In the intermediate B || region R(T ) de-
velops a minimum the position of which depends on B || . As we 
discuss below, these minima may indicate the possibility of the 
formation of the bosonic topological insulator state.

Discussion and conclusion

The developed gauge theory establishes a consistent picture of 
the SIT and the intervening Bose metal state. Materials harboring 
weak quantum fluctuations experience a direct transition. Mate-
rials hosting enhanced quantum fluctuations, sufficient to destroy 
both Cooper pair and vortex Bose condensates, exhibit the SIT via 
an intermediate Bose metallic state. The strength of quantum fluc-
tuations is quantified by the parameter η defined in Eq. (1). The 
Bose metal state is a bosonic topological insulator with the bulk 
gap quantified by the Chern-Simons mass and conductivity medi-
ated by the ballistic edge Cooper pair modes. At zero temperature, 
the transitions superinsulator ↔ BM at g1 and superconductor ↔
BM at g2 are BKT quantum phase transitions dual to each other so 
that g1 = 1/g2. At η → 1 the two transitions merge into a self-dual 
quantum tricritical point at (η = 1, g = 1) as shown in Fig. 3b. At 
η < 1 the direct SIT is a first order transition.

Equipped with these theory predictions, we turn to the anal-
ysis of the experimental data. Plotting R�(B) for different tem-
peratures above the saturation yields three near-crossing points 
at fields BSB, BSI , B IB and corresponding resistances RSB, RSI , R IB , 
see Fig. 4c. To verify our central prediction about the quantum 
phase transitions (QPT) we perform a scaling analysis. The scal-
ing theory of a QPT involves a diverging spatial correlation length 
ξQPT and a correlation time τ , related via ξQPT ∝ τ z [37]. A quan-
tum BKT transition implies ξQPT ∝ exp(const/

√|g − gc|), therefore 
one has to accordingly modify the standard finite size scaling for-
mulae, noticing that now the substitution τ → T0/T yields the 
scaling variable X = |g − gc| ln2(T0/T ) replacing the standard one 
[37] |g − gc|/T 1/zν , see SI for a detailed derivation. Here T0 is 
a non-universal parameter determined by best fit. This BKT scal-
ing can be viewed as a formal ν → ∞ limit of the original Fisher 
form, reflecting the fact that the BKT transition is an infinite-order 
transition. The BKT scaling is the exact opposite of the Griffith 
singularity scenario, in which z → ∞, rather than ν . The Griffith 
scenario is associated with strong disorder. In our case, instead, 
the Harris criterion [43], implies that disorder is irrelevant for the 
SIT in the renormalization group sense. The role of disorder in the 
large-scale properties of the system is merely to tune the SIT and 
renormalize material parameters.

We plot R�(B, T ) as a function of X around BSB and B IB, iden-
tifying them as SC ↔ BM and SI ↔ BM transitions and treating 
T0 as a fitting parameter optimizing the scaling curve. Figs. 4d,f 
demonstrate excellent scaling, spanning nearly two orders of mag-
nitude of resistance at temperatures above 0.1 K, with the best 
fit achieved for T0 = 2 K. In full concert with duality considera-
tions, T0 comes out the same for both transitions. Scaling survives 
also near BSI , Fig. 4e due to the critical vicinity of the quantum 
tricritical point. The best scaling is achieved for T0 = 1 K, again 
in accord with the theoretical expectation that for the tricritical 
point the parameter T0 is expected to differ from those for SC ↔
BM and SI ↔ BM. We stress here that the criticality around BSI

is the criticality related to the tricritical point, since for η < 1 the 
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Fig. 5. Sheet resistance vs 1/T plots and the BKT scaling for correlation lengths. a: Representative log R� vs. 1/T plots. The dashed black line depicts R ∝ exp(−T ∗/T )

dependence. The dotted line describes R�(1/T ) behavior for two parallel resistors comprising Rb ∝ exp(T ∗∗/T ) (bulk modes) insulating dependence and constant (edge 
ballistic modes) behavior, see text. b: The BKT scaling of 1/Tmin ∼ ξcorr ∼ exp[const/(X/Xc − 1)1/2] of the BKT correlation length near the superconductor-BM quantum BKT 
transition in different materials driven by either magnetic field, disorder, or gate voltage, demonstrating the universality of the BKT superconductor-BM transition. The circles 
stand for Tmin(B) in NbTiN films, X/Xc = B/BSB; the diamonds mark data for Van der Waals heterostructures of twisted double bilayer graphene (TDBG) where the SIT is 
tuned by the in-plane magnetic field, X/Xc = B ||/Bc , Bc = 2.5 T is an adjustment parameter and Tmin is divided by 35; the triangles mark data for the SIT driven by the 
frustration factor f = �/�0, with � being the magnetic flux per plaquette in JJA, fc = 0.1 [4], and squares mark the film thickness driven SIT in granular films [2], for which 
X/Xc = RN/RNc , RNc = 32 k�, Tmin is divided by 16. c: The BKT scaling of the correlation length ∼ 1/Tdev near the insulator-Bose metal transition, detected by deviation of 
the resistance from the exponential insulating exp(T ∗∗/T ) behavior (the dashed line in the inset).
transition is of first-order and for η > 1 there is an intermediate 
BM phase. The scaling at this unique SIT point exhibits the BKT 
criticality, contrasting the ordinarily employed power-law scaling. 
This follows from the fact that, since in the critical vicinity of the 
tricritical point (g = 1, η = 1) two out of three merging phase 
transitions are of the BKT nature, the SIT tricritical point should 
also exhibit the BKT criticality [44]. This calls for revisiting all the 
rich lore of the experimental SIT and for careful re-inspection of its 
scaling behaviour. One immediately observes that the expected du-
ality relations BSB/BSI = BSI/B IB and RSB/RSI = RSI/R IB, are satisfied 
with good accuracy. This accuracy is an additional indication of the 
topological nature of the anomalous metal appearing between the 
insulating and superconducting phases at the SIT.

Shown in Fig. 5a are the magnified R�(T ) dependencies which 
we re-plotted as functions of 1/T for the fields below 0.16 T. We 
present a few representative curves to avoid data crowding. At 
relatively high temperatures one sees the resistance rapidly drop-
ping as function of 1/T due to thermally activated vortex mo-
tion, R�(1/T ) ∝ exp(−T ∗/T ), the exponential behavior is shown 
by dashed line. At fields, B < BSB, the resistance R�(T ) saturates 
at low temperatures, indicating the crossover to a quantum vor-
tex creep regime (see SI). Our findings are in accord with the 
recently reported dissipative state with non-zero resistance in two-
dimensional 2H-NbSe2 films [45]. It is worth noting that, as is 
now well established, 2D quantum vortex creep is characteristic 
of a Cooper pair condensate state and, thus, BSB does indeed de-
note the transition to a superconducting state. Above BSB = 0.011
T the R�(1/T ) dependencies develop minima, which become less 
pronounced above the BSI field, where the insulating behavior be-
comes dominant. These emergent minima signal that the bulk 
spectrum of charge excitations acquires a gap, which prevents bulk 
electronic transport. Such minima are often viewed as the hall-
mark of topological insulators, see, for example, [46] and refer-
ences therein. We now note that in the BM, i.e. topological in-
sulator domain, BSB < B < B IB, one can neglect the contribution 
from moving vortices as it is seen from Fig. 5a. Then the sheet 
resistance of the BM results from the charge current contribu-
tion from two parallel channels, (i) the ballistic edge modes and 
(ii) the thermally activated bulk modes over the CS gap. Accord-
ingly, below the minimum, T < Tmin, the sheet resistance is indeed 
perfectly fitted by the two parallel resistors formula R�(T , B) =
RCS(T )Rbal(B)/[RCS(T ) + Rbal(B)], where RCS(T ) ∝ exp(TCS/T ) is the 
bulk thermally activated resistance corresponding to surmounting 
the insulating gap TCS, while Rbal(B) is the field dependent resis-
tance mediated by the edge modes. A fit for the field 0.05 T is 
shown by the dashed line in Fig. 4a. Upon increasing the mag-
netic field above BSI = 0.039 T (i.e. moving into the g < 1 region), 
Rbal(B) increases and the edge states incrementally mix with the 
bulk modes. As a result, the minimum in R�(T , B) becomes less 
pronounced and the film crosses over continuously to insulating 
behavior. Markedly, the R(T ) vs. 1/T dependence in the TDBG ex-
hibits remarkable similarity to that in NbTiN, see SI. It might be 
objected that detecting a topological insulator state with a mag-
netic field is not appropriate since this breaks the protecting time 
reversal symmetry of the edge modes, thereby inducing an edge 
gap. However, the magnitude of this gap can be estimated by the 
cyclotron frequency of the applied field. For our extremely weak 
fields this gives a gap always smaller than 25 mK even at the high-
est applied field values, and even much smaller typically. Since the 
lowest measurements temperatures were around 40 mK, the edge 
modes can be still considered as gapless in our whole experimen-
tal range.

Near the quantum BKT superconductor-BM and superinsulator-
BM transitions the fugacities associated with the Cooper pair and 
vortex Bose condensates generate new energy scales and the cor-
responding correlation lengths ξSB ∼ 1/Tmin and ξIB ∼ 1/Tdev, re-
spectively which are expected to display the BKT criticality. These 
energies are identified as Tmin, the position of the minimum in 
R� , heralding the emergence of the bulk CS insulating gap, and 
the temperature Tdev, at which R�(T ) in Fig. 5a deviates from the 
insulating exponential dependence exp(const/T ) and marking the 
switching on of the edge modes and the start of shunting the in-
sulating bulk by metallic edge channels. The latter can be viewed 
as quantum wires, hence their switching on can be described as a 
BKT quantum phase transition in analogy to the seminal work [47]. 
Scaling of 1/Tmin as function of the dimensionless tuning parame-
ter B/BSI is presented in Fig. 5b by green solid circles. Accordingly, 
the positions of the minima of R(T ) of TDBG at different B || are 
shown by violet diamonds. Also displayed in Fig. 5b are similar de-
pendencies for other materials, metallic granular films [2] and JJA 
[4]. The data comply perfectly with the BKT exponential scaling il-
lustrating the universality of the transition into the BM in different 
systems. The scaling of 1/Tdev is shown in Fig. 5c, although there 
the window of the magnetic fields is less wide and the error-bar 
near B = B IB grows large.

The presented gauge theory of the Bose metal reveals that the 
long-debated SIT-intervening metallic phase is a bosonic topologi-
cal insulator. Its metallic conductance is mediated by bosonic edge 
modes and the superconductor-topological insulator and topolog-
ical insulator-superinsulator transitions are quantum BKT phase 
transitions. The BKT scaling at the transition points, together with 
the high-precision duality relations for the transition fields and 
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the corresponding resistances, providing an unambiguous evidence 
for the bosonic topological insulator and the associated quantum 
BKT transitions, are reported for the first time. Our observation 
of a bosonic topological insulator in NbTiN and similar behavior 
in TDBG, stresses its universal character as a result of the Chern-
Simons gap in the spectrum of relevant excitations. Note that the 
occurrence of bosonic topological insulator in the double belayered 
graphene is in a concert with the expectations of [22]. Interest-
ingly, our previous findings of [41] support also the percolation 
network picture [48] of gapless bosonic channels near the BKT 
transition to TI. Finally, our results resolve the long-standing puzzle 
of the SIT, unraveling that the system follows an indirect transition 
scenario through the intervening metallic state in systems with 
strong quantum fluctuations, while films with suppressed quan-
tum fluctuations (more disordered and/or with the higher carrier 
densities) exhibit the direct SIT.

Materials and methods

Free energy We start with the action describing the intertwined 
vortex-CP dynamics derived in [20]:

S =
∫

dtd2x

[
i

q̄

2π
aμεμαν∂αbν + vc

2e2
v

f0 f0 + 1

2e2
v vc

fi f i

+ vc

2e2
q

g0 g0 + 1

2e2
q vc

gi gi +i
√

q̄aμ Q μ + i
√

q̄bμMμ

]
, (8)

where vc = 1/
√

με is the speed of light in the film material, ex-
pressed in terms of the magnetic permeability μ and the electric 
permittivity ε (we use natural units c = 1, h̄ = 1). This action (8) is 
a non-relativistic version of the topologically massive gauge theory 
[21] describing a (2 + 1)-dimensional vector particle with the CS 
mass, mCS = q̄eqev/2π vc , arising without spontaneous symmetry. 
The emergent gauge fields aμ and bμ mediate the mutual statistics 
interactions between Cooper pairs, with word-lines Q μ and charge 
q̄ = 2 and vortices of flux 2π/q̄, with world-lines Mμ . When ap-
propriately regularized on a lattice of spacing � (see Supplemen-
tary Information), these world-lines can be viewed as “strings” 
of typical length L = N�, carrying electric and magnetic quantum 
numbers Q and M , respectively. To derive the free energy of the 
interacting Cooper pair-vortex system the gauge fields in the above 
quadratic action are integrated out via the standard Gaussian inte-
gration procedure, obtaining thus an effective action for the charge 
and vortex strings alone. As usual in statistical field theory this 
has the interpretation of an energy for the “string gas”, which is 
proportional to the string length. To obtain a free energy associ-
ated with the strings, one has to include the contribution from the 
positional string entropy, which is also proportional to its length, 
with the proportionality factor μe = ln(5) representing the 5 pos-
sible choices for string continuation at each lattice site. For the 
relevant case of Cooper pairs (i.e. q̄ = 2), we find the free energy 
in the main text.

Effective action for the topological insulator To determine the nature 
of the Bose metal we find its electromagnetic response by coupling 
the charge current (q̄e) jμ to an external electromagentic potential 
Aμ and we compute its effective action by integrating out gauge 
fields aμ and bμ ,

e−Seff
(

Aμ
)
= 1

Z

∫
DaμDbμe−S

(
aμ,bμ

)+i(q̄e) jμ Aμ ,

Z =
∫

DaμDbμe−S
(
aμ,bμ

)
. (9)

This gives
Seff
(

Aμ

) = g

4

(
q̄e

2π

)2

d

∫
d3x

(
vc F 2

0 + 1

vc
F 2

i

)
, (10)

where Fμ = εμαν∂α Aν is the dual field strength and we have iden-
tified the geometric lattice factor 4μeη� with the relevant thick-
ness parameter d of the film, so as to maintain self-duality (see 
main text). This is the action of a bulk insulator which becomes 
best evident in the relativistic case, vc = 1:

Seff
(

Aμ

) = g

2

(
q̄e

2π

)2

d

∫
d3x Aμ

(
−δμν∇2 + ∂μ∂ν

)
Aν . (11)

Varying this action with respect to the vector potential Aν gives 
the main text formula for the electric current.

Conduction by edge modes The Chern-Simons effective action is not 
invariant under gauge transformations ai = ∂iλ and bi = ∂iχ at the 
edges. Two chiral bosons [34] λ = ξ + η and χ = ξ − η have to 
be introduced to restore the full gauge invariance, exactly as it is 
done in the quantum Hall effect framework [35] and for topologi-
cal insulators [49]. The full gauge invariance is restored by adding 
the edge action

Sedge = 1

π

∫
d2x (∂0ξ∂sξ − ∂0η∂sη)+q̄eeff

∫
d2x A0

(√
q̄

2π
∂sχ

)
,

(12)

including the electromagnetic coupling of the edge charge den-
sity ρ = (q̄eeff)(

√
q̄/2π)∂sχ in the As = 0 gauge, q̄eeff being the 

effective charge of the Cooper pairs in the Bose metal phase, 
q̄eeff = q̄e

√
g . As in the case of the quantum Hall effect, the non-

universal dynamics of the edge modes is generated by boundary 
effects [35], which result in the Hamiltonian

H = 1

π

∫
ds

[
−vb (∂sξ)2 − vb (∂sη)2

]
, (13)

where vb is the velocity of propagation of the edge modes along 
the boundary. Upon adding this term, the total edge action be-
comes

Sedge = 1

π

∫
d2x [(∂0 − vb∂s) ξ∂sξ − (∂0 + vb∂s)η∂sη]

+q̄eeff

∫
d2x A0

(√
q̄

2π
∂sχ

)
. (14)

The equation of motion generated by this action is

vb∂sρ = q̄eeff

2π
E = q̄eeff

2π
∂s A0 . (15)

Integrating this equation gives eq. (5) in the main text, which rep-
resent ballistic charge conduction with the resistance R = RQ/g .

Bose metal stability To analyze an intervening phase harboring di-
lute topological excitations in the Hamiltonian formalism, we set 
Q μ = Mμ = 0 and decompose the original gauge fields in Eq. (8)
as ai = ∂iξ + ε i j∂ jφ, bi = ∂iλ + ε i j∂ jψ . Quantizing the action in (8)
we arrive at the ground state wave functional

�[ai,bi] = exp
[

i(q̄/4π)

∫
d2x (ψ�ξ + φ�λ)

− (q̄/4π)

∫
d2x

(
g(∂iφ)2 + 1

g
(∂iψ)2

)]
,

generalizing the Schrödinger wave function to a system with an 
infinite number of degrees of freedom. The fields φ and ψ rep-
resent vortex- and CP charge-density waves, which are gapped 



8 M.C. Diamantini et al. / Physics Letters A 384 (2020) 126570
due to the mutual statistics interactions. When the two sym-
metries are compact, however, the fields ξ and λ are angles 
and we have to take into account also the corresponding topo-
logical excitations, vortices and point charges. These can be in 
highly entangled mixed states or in their pure free state. Quan-
tum operator expectation values in the entangled mixed state in 
which vortices are the non-observed environment, are given by 
〈O〉 ∝ ∫

DψDλ O(ψ, λ) exp
( − ∫

d2x q̄
2π g (∂iψ)2 + q̄

2π g (∂iλ)2 −
2zcosλ

)
, see SI. The quantum fugacity z governs the degree of 

entanglement. This is the classical partition function of the sine-
Gordon model undergoing the BKT transition [32,33]. In a quantum 
case, it is a quantum BKT transition at the “effective temperature” 
for vortex liberation set by the quantum conductance parameter g . 
Correspondingly, charge liberation from the dual entangled state 
is set by 1/g . The highly entangled states correspond to supercon-
ductor and superinsulator at high and low values of g , respectively, 
where vortices and charges have algebraic correlation functions. 
The Bose topological insulator is the intervening state at g � 1, 
where both charges and vortices are screened by strong quantum 
fluctuations, leading to correlation functions (7).

Samples and measurements To grow NbTiN films, we employed the 
atomic layer deposition (ALD) technique based on sequential sur-
face reaction step-by-step film growth. The fabrication technique 
is described in detail in the Supplemental Material. This highly 
controllable process provides superior thickness and stoichiomet-
ric uniformity and an atomically smooth surface [50] as compared 
to chemical vapor deposition, the standard technique used to grow 
NbTiN films. We used NbCl5, TiCl4, and NH3 as gaseous reactants; 
the stoichiometry was tuned by varying the ratio of TiCl4/NbCl5
cycles during growth [51]. The superconducting properties of these 
ultrathin NbTiN films were optimized by utilizing AlN buffer lay-
ers grown on top of the Si substrate [52]. Nb1−xTixN films of 
thicknesses d = 10 were grown. Films have a fine-dispersed poly-
crystalline structure [41]. The average crystallite size is ≈ 5 nm. 
Deposition temperature is 3500C. Ti fraction x is 0.3.

The films were lithographically patterned into bridges 50 μm 
wide, the distance between current-contacts was 2500 μm and dis-
tance between voltage-contacts was 450 μm. Most resistive trans-
port measurements are carried out using low-frequency ac tech-
niques in a two-terminal configuration with V ≈ 100 μV, f ≈ 1 Hz. 
Additionally we measured temperature dependence of resistance at 
zero magnetic field. Additionally we measured temperature depen-
dence of resistance at zero magnetic field using both, two- and 
four-terminal, configurations. From comparison the obtained data 
we determined the number of squares in a two-terminal config-
uration for determining the resistance per square and the con-
tact resistance. For ac measurements we use SR830 Lock-ins and 
current preamplifiers SR570. All the resistance measurement are 
carried out in linear regime with using adequately system of fil-
tration. Resistivity measurements at sub-Kelvin temperatures were 
performed in dilution refrigerators 3He/4He with superconducting 
magnet.
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