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The standard approach to realize a spin-liquid state is through magnetically frustrated states, relying on ingre-
dients such as the lattice geometry, dimensionality, and magnetic interaction type of the spins. While Heisenberg
spins on a pyrochlore lattice with only antiferromagnetic nearest-neighbor interactions are theoretically proven
disordered, spins in real systems generally include longer-range interactions. The spatial correlations at longer
distances typically stabilize a long-range order rather than enhancing a spin-liquid state. Both states can, however,
be destroyed by short-range static correlations introduced by chemical disorder. Here, using disorder-free
specimens with a clear long-range antiferromagnetic order, we refine the spin structure of the Heisenberg spinel
ZnFe2O4 through neutron magnetic diffraction. The unique wave vector (1, 0, 1

2 ) leads to a spin structure that
can be viewed as alternatively stacked ferromagnetic and antiferromagnetic tetrahedra in a three-dimensional
checkerboard form. Stable coexistence of these opposing types of clusters is enabled by the bipartite breathing
pyrochlore crystal structure, leading to a second-order phase transition at 10 K. The diffraction intensity of
ZnFe2O4 is an exact complement to the inelastic scattering intensity of several chromate spinel systems which
are regarded as model classical spin liquids. Our results challenge this attribution, and suggest instead of the
six-spin ring mode, spin excitations in chromate spinels are closely related to the (1, 0, 1

2 ) type of spin order and
the four-spin ferromagnetic cluster locally at one tetrahedron.

DOI: 10.1103/PhysRevB.109.064421

I. INTRODUCTION

The three-dimensional pyrochlore structure [Fig. 1(a)] has
been of major research interest since Verwey and Anderson’s
original work on charge and magnetic behavior in spinel
oxides [1,2]. If only the nearest-neighbor interactions are
considered, there is no long-range magnetic order for both
ferromagnetic Ising [2] and antiferromagnetic Heisenberg [3]
spins, and the geometrical structure would drive the spins
into a disordered configuration. Real systems have mag-
netic interactions beyond nearest-neighbor, which combined
with additional anisotropic effects such as crystal fields and
Dzyaloshinsky-Moria exchange interactions, induce many py-
rochlore systems to form long-range magnetically ordered
states at finite temperatures [2,4]. For spins residing on a py-
rochlore sublattice, most magnetic structures have relatively
simple wave vectors such as (0, 0, 0) and ( 1

2 , 1
2 , 1

2 ) [4–6].
Here, we consider a unique exception to that trend, the spinel
ZnFe2O4 [Fig. 1(b)].

ZnFe2O4 has been studied by both powder [7–14] and
single-crystal [15–17] neutron scattering since the dawn of
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neutron magnetic scattering seven decades ago. Despite early
theoretical interest [2], there is no understanding of its mag-
netic space group and the antiferromagnetic spin structure.
The antiferromagnetic spin structure is known to have wave
vector (1, 0, 1

2 ) below TN = 9.95 K, and is strongly suspected
to be of a noncollinear form [9–11]. The wave vector is
unique for spins on a cubic pyrochlore sublattice. While
cubic GdInCu4 and HoInCu4 also order magnetically with
wave vector (1, 0, 1

2 ) [18,19], the moments reside on a sim-
ple face-centered-cubic (fcc) lattice and magnetic interactions
are mediated by itinerant electrons. For pyrochlore-structured
spin assemblies, this wave vector has only been reported in
ZnCr2O4 and MgCr2O4 [20,21]. Unfortunately, ZnCr2O4 and
MgCr2O4 both have strong first-order lattice distortions to at
least the tetragonal symmetry upon magnetic ordering [22].
As the ground state is composed of three or four coexisting
spin orders, the (1, 0, 1

2 ) antiferromagnetic spin structure has
not been fully resolved [20,21]. Indeed, the listed spin struc-
ture in Fig. 4(c) of Ref. [21] for MgCr2O4 has no applicable
symmetry, and the spin arrangement can potentially violate
their presumption of no net moment per individual tetrahe-
dron; in two tetrahedra not specifically drawn in the figure,
the spin clusters appear ferromagnetic. By contrast, ZnFe2O4

provides a clean model antiferromagnet with a single (1, 0, 1
2 )

vector in the cubic pyrochlore lattice, and the magnetic phase
transition is of second-order nature as revealed by heat capac-
ity measurements [23].

Neutron magnetic diffraction studies of ZnFe2O4 in the
literature [8–17] all exhibit a large amount of spin-diffuse
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FIG. 1. (a) The pyrochlore structure in three-dimensional space,
long studied as the host of a wide range of interesting magnetic phe-
nomena [1,2,4]. (b) The lattice of spinel AB2O4 hosts a pyrochlore
sublattice with cations occupying the B (red) sites, in addition to
A (gray) and oxygen (blue) sites. ZnFe2O4 is a normal spinel, with
Zn and Fe ions ideally occupying A and B sites, respectively. This
schematic is drawn for the Fd 3̄m space group with origin choice
1; for spinel structure with a breathing pyrochlore lattice under the
F 4̄3m space group, see Fig. 8.

scattering originating from disorder [23]. It is well
documented that mechanical grinding can significantly
increase the level of inversion disorder in ZnFe2O4, greatly
affecting its magnetic properties [14]. Neutron magnetic pow-
der diffraction is also intrinsically incapable of determining
a noncollinear spin structure without an initial presumption
[9,24]. Recently, we demonstrated the growth of ZnFe2O4

single crystals with high stoichiometry and the clean structural
limit with a minimal amount of inversion disorder [23]. The
long-range antiferromagnetic order was clearly established
by neutron single-crystal diffraction with no signature of
spin-diffuse scattering (Fig. 2). Single-crystal magnetic
diffraction lifts the d-spacing degeneracy between reflections,
and the enhanced signal-to-background ratio allows for
the extraction of weak magnetic reflections to very high
transferred momentum. However, the improved quality of
single crystals leads to severe extinction effects, reducing the
diffraction intensity to as low as 5% [23,25]. For single-crystal
diffraction measurements using a monochromatized beam, the
severity of the extinction effect is often indirectly inferred by
unrealistic values of refined thermal parameters [26]. With the
advancement of chopping schemes and detector technology
in recent years, neutron elastic scattering can be measured
with the full information of wavelength λ and diffraction 2θ

[27,28], and the extinction effect can be directly visualized
as a continuous function of λ [23] (Appendix B). Such an
experimental design provides an opportunity to have the
extinction effect examined in every reflection family, which
is an advantage beyond simply improving statistics by incor-
porating a large number of diffraction events. As continuous
wavelength-based neutron diffraction at spallation neutron
sources has become routine over the last decade [27–30], it is
now both imperative and opportunistic to quantitatively take
the extinction effect into account for better refinement. The
improving understanding of magnetic space groups in the
last two decades has also been a key enabler for performing
magnetic structure analyses in single crystals [6,31,32].

Here we report the spin structure of ZnFe2O4

through single-crystal diffraction and refinement at the

FIG. 2. Representative single-crystal diffraction patterns of
ZnFe2O4. Unsymmetrized diffraction intensities of both lattice and
antiferromagnetism are presented as H -K plane slices at two L values
of 1.0 and 2.0. All intensities have been integrated over a thickness of
0.05 r.l.u. along L. The data are collected from a piece of crystal in the
clean limit [23], and measured below TN. The magnetic diffraction
signal, such as (0, 1

2 , 1), is resolution limited and shows no sign of
diffuse scattering. The presence of (4n + 2, 4m, 0) type of reflections
indicates the F 4̄3m space group instead of Fd 3̄m. The ring structure
is from diffraction of the aluminum sample holder, as no background
has been subtracted. For diffraction patterns with L values of 0.0 and
0.5, the readers are referred to Ref. [23]. Intensities are in arbitrary
units and normalized to the highest count in one pixel.

continuous-wavelength neutron scattering beam lines
CORELLI and TOPAZ. With high-fidelity extraction of the
diffraction intensity, correction of the extinction effect over
the broad wavelength range, and analysis of the symmetry
conditions, we deduce the antiferromagnetic spin arrangement
in the parent crystal space group F 4̄3m of broken inversion
symmetry, and identify it as based on representation mW 1
in the magnetic space group Ic4̄2m. Surprisingly, this unique
spin structure has spins align ferromagnetically (FM) and
antiferromagnetically (AFM) on corner-connected tetrahedra,
forming a three-dimensional checkerboard pattern. This
checkerboard pattern becomes possible because of the
F 4̄3m space group, as the breathing pyrochlore lattice
accommodates both FM and AF spin clusters on two different
sized tetrahedra. Our revelation of a single (1, 0, 1

2 ) ordered
antiferromagnetic state on a pyrochlore lattice has profound
implications to the existing understanding of the classical
spin-liquid systems ZnCr2O4 and MgCr2O4.
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II. EXPERIMENTAL METHODS

A. Single-crystal preparation

Single crystals of ZnFe2O4 were grown from high-
temperature molten solution of anhydrous borax [23]. The
proportions of ZnO and Fe2O3 powders in the initial solution
were finely tuned to make the molar ratio of Fe and Zn
ions in the grown crystals stoichiometric (within ±0.005 of
2.000). Furthermore, by growing from different starting tem-
peratures, the level of inversion disorder of spinel oxide can be
controlled [23].

B. Phase diagram characterization

The field-temperature H-T magnetic phase diagram of
ZnFe2O4 has been characterized by both heat capacity and
magnetic susceptibility measurements. Three pieces of sto-
ichiometric crystals in the clean limit were used; all were
grown from 850 ◦C to 750 ◦C [23], including the one in Sup-
plementary Fig. S1D of Ref. [23]. These samples have a
Curie-Weiss temperature TCW = −25 K [23]. The magnetiza-
tion was measured using the vibrating sample magnetometer
(VSM) of a Physical Property Measurement System (PPMS)
(Dynacool-14T, Quantum Design, Inc.), with temperature
varying from 2 to 400 K and field up to 14 T, applied on two
pieces of crystal along the (1, 1, 0) and (1, 0, 0) directions
respectively. Heat capacity was measured on two crystals
with field direction applied along the (1, 1, 1) and (1, 0, 0)
directions, respectively, in a Dynacool-9T PPMS.

C. Wavelength-resolved neutron diffraction

Structural and magnetic characterizations of stoichiometric
ZnFe2O4 were carried out at two neutron elastic scattering
beam lines: TOPAZ (BL-12) and CORELLI (BL-9) at the
Spallation Neutron Source of Oak Ridge National Laboratory
[27–30,33]. Both beam lines utilize unpolarized incident neu-
trons of continuous wavelength over slightly different ranges,
from 0.6 to 3.5 Å for TOPAZ and from 0.8 to 2.4 Å for
CORELLI. The short-wavelength cutoff is set by the focus-
ing limit of the high-flux beam guide, a key component that
enables probing sub-mm sized samples. The long-wavelength
limit is set by the SNS pulse frequency (60 Hz) and the dis-
tance between the neutron moderator and the sample position
at the beam line [28,30].

Most of our neutron data were collected from one
piece of stoichiometric single crystal that was measured
at TOPAZ at 100 K and at CORELLI at 6 K. The single
crystal was grown from 1000 ◦C to 850 ◦C, weighs 7.4 mg,
and is 1.2 mm in diameter [Supplementary Fig. S1C of
Ref. [23]]. Its magnetic susceptibility was reported earlier
[23] with a TCW = −20 K. The small difference in TCW of
crystals grown at 1000 ◦C and 850 ◦C indicates that they
are both in the clean limit of inversion disorder; the crystals
grown at 850 ◦C are too small to be effectively studied by
neutron scattering. Although CORELLI is specialized for
studying elastic diffuse scattering, the 1000 ◦C-grown single
crystal does not demonstrate magnetic diffuse scattering in
the ordered phase but instead exhibits a pattern of sharp
diffraction spots from both antiferromagnetism and the lattice
(Fig. 2, and Ref. [23]). Such an instrument-resolution limited

diffraction pattern is critical to solving the antiferromagnetic
spin structure. The comparison in Fig. 9 uses magnetic
diffuse scattering data taken at CORELLI from a mosaic
assembly of stoichiometric crystals (Supplementary Fig. S1E
of Ref. [23]); these crystals were grown at temperatures
from 1250 ◦C to 950 ◦C, resulting in a high level of inversion
disorder.

Despite their similarity of continuous-wavelength neutron
diffraction, data collections at TOPAZ and CORELLI have
different emphases on the coverage of reciprocal space. At
both beam lines, single-crystal samples are placed at a series
of fixed angular positions for a certain amount of time while
diffraction happens for neutrons with wavelengths that satisfy
Bragg’s law. TOPAZ covers a large 2θ range from 15◦ to
155◦, allowing the same reflection to be measured over a large
wavelength range. At TOPAZ, 35 frames were collected for
the current sample over a total flux of 94.3 C of proton charge,
positioned at largely different ω, χ, φ angular positions. The
choices of crystal angular placements emphasized the cover-
age of many families of reflections in reciprocal space but not
necessarily continuous [29]. On the other hand, CORELLI
provides a continuous coverage of the reciprocal space in
order to reconstruct the diffuse scattering pattern without sym-
metrization. Typically, the crystal is rotated only along the
vertical axis, and in our experiment by 1.5◦ steps over the
whole 360◦ range for a total of 240 frames. The flux of 0.32 C
of proton charge per frame we used at CORELLI is much
shorter than that at TOPAZ. Additional details on the data
reduction process are given in Appendix A and a discussion of
the determination of wavelength-dependent extinction effects
is provided in Appendix B.

III. RESULTS: LATTICE STRUCTURE REFINEMENT

Representative CORELLI single-crystal diffraction pat-
terns for ZnFe2O4 are shown in Fig. 2, and intensities of
several reflection families and their wavelength dependence
are plotted in Fig. 3 for measurements of the same sample
at CORELLI and TOPAZ. For strong reflections such as
(8, 4, 0) and (4, 4, 0), the wavelength dependence in Fig. 3
clearly demonstrates a severe extinction effect; for (4, 4, 0),
I (2.7 Å)/I (0.6 Å) ≈ 0.07. Furthermore, intensity ratios be-
tween the strongest reflections such as (8, 4, 4) and (4, 4, 0)
and the weakest reflections such as (2, 0, 0) and (4, 2, 0)
are more than 103. Overall, we have over four decades of
dynamic range in measured signal strength (Appendix B).
Previously, in Ref. [23], the data reduction procedure pro-
duced much less dynamic range, with the largest intensity
ratio being less than 200, indicating that reductions of past
single-crystal diffraction studies at TOPAZ could have yielded
overestimated intensities of weak reflections.

The space group of ZnFe2O4 was recently determined to
be F 4̄3m [23] rather than Fd 3̄m as reported in the literature
[10,11,34]. Our raw data are reduced using general selection
rules for a face-centered Bravais lattice with h, k, l either all
even or all odd; all reflections allowed in the F 4̄3m space
group but forbidden in Fd 3̄m such as (0, 0, 2) and (4, 2, 0)
are collected with nonvanishing intensities (Fig. 3). Using a
data reduction based on the selection rules of the primary
Bravais lattice does not introduce forbidden reflections of
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FIG. 3. Single-crystal diffraction intensities at (a) TOPAZ and
(b) CORELLI, color grouped by reflection families and plotted as a
function of measurement wavelength. For strong reflection families,
the slanted wavelength dependence is a signature of the extinc-
tion effect. However, weak reflections also demonstrate a noticeable
wavelength dependence that is not expected. This remaining issue
in data reduction will be improved in future work. (c) Calculated
versus observed lattice structure factors Fcalc vs Fobs of all data (black
crosses) taken at TOPAZ; zoomed-in view shows the comparison
for reflections of weak intensity. Colored points mark selected fam-
ilies as listed in the legend. While the ideal behavior is the dashed
diagonal line (orange), for strong reflections, the bending of the
curve indicates a residual from an incomplete correction of extinction
effects.

the F 4̄3m space group, such as mixed even-odd indices like
(0, 0, 1) and (0, 1, 1). This can be directly visualized from
the unsymmetrized data plotted in Fig. 2. Multiple scatter-
ing has been argued in Ref. [34] to explain our observation
of forbidden peaks of Fd 3̄m. As extensively discussed in
Ref. [23], multiple scattering and other potential artifacts
such as harmonics can be ruled out utilizing the simultane-
ously recorded neutron wavelength λ and diffraction angle 2θ

provided by the continuous-wavelength diffraction technique
[28]. Furthermore, both techniques of Ref. [34], single-crystal
azimuthal measurements using a laboratory-based x-ray tube
source and powder x-ray diffraction, can not provide the
necessary dynamic range to rule out the presence of weak
peaks. It is well understood that the presence of strong mul-
tiple scattering does not rule out the presence of weak real
signals [35], as the technical challenge always resides at the
sensitivity of low intensities when the multiple scattering
becomes weak.

In Ref. [23], the extinction effect was corrected for each
individual family to extract F 2

hkl in the λ = 0 limit; approx-

imately 25% of the strong reflection families with large
extinction were removed from the refinement. The manual
selection process [23,26] was effective but ad hoc, introducing
the ingredient of discretion. Here, we seek a global refinement
of all diffraction events, with the wavelength and structure-
factor-dependent extinction effect fully incorporated in the
refinement software (Appendix B).

The refined lattice positions and thermal parameters from
both TOPAZ and CORELLI measurements are summarized
in Table I. The two lattice structures at 100 and 6 K, across
the antiferromagnetic phase boundary, are both consistent
with F 4̄3m, indicating a second-order antiferromagnetic
phase transition. The amount of inversion symmetry
breaking appears to increase going from TOPAZ data at
100 K to CORELLI data at 6 K, potentially suggesting a
magnetostrictive nature. At 6 K, the two oxygen positions
in the current refinement have a larger amount of inversion
symmetry breaking than the values listed in Ref. [23], while
the iron position has a smaller deviation from the inversion
symmetry position than that given in Ref. [23]. We attribute
the difference between the current and previous studies to
the improved neutron data reduction for intensity integration
(Appendix A) [36].

The overall quality of refinement is evaluated by plotting
Fcalc vs Fobs in Fig. 3(c) for all events. Ideally, Fcalc vs Fobs

should follow a diagonal line if the extinction effect is fully
corrected. Here, we observe a slight curvature in the plot, in-
dicating the extinction effect has been corrected but not to the
full extent. Several reflection families of high, medium, and
low intensities are marked in Fig. 3(c). For reflection families
with strong intensities, such as (8, 4, 4) and (4, 4, 0), there
is insufficient correction to the extinction effect. Families of
intermediate intensities, such as (3, 1, 1) and (2, 2, 2), Fcalc vs
Fobs follows the diagonal line.

It would be desirable to use the large statistics of our data to
further analyze the inversion disorder in ZnFe2O4 [23]. How-
ever, both R and goodness-of-fit (GOF) values in the current
refinement (Table I) remain relatively large, which indicates
the need to fundamentally improve the extinction correction
process (Appendix B). At the current stage, we refrain from
further analysis of the inversion disorder.

IV. RESULTS: NONCOLLINEAR
ANTIFERROMAGNETIC STRUCTURE

The long-range antiferromagnetic order in ZnFe2O4 was
previously explored by neutron powder diffraction studies in
the early 1970s [9–11]; the focus of more recent neutron
magnetic scattering has shifted to disorder-dominated short-
range spin correlations [12–17]. The three powder neutron
diffraction studies in Refs. [9–11] each collected only 8–13
magnetic peaks, including many degeneracies with reflections
of identical d spacing. These data sets are inadequate to refine
a noncollinear spin structure [24] and were instead limited
to collinear types of antiferromagnetism in ZnFe2O4; one
proposed structure set collinear spins at an angle of 35◦–45◦ to
the c axis [9]. In contrast to powder magnetic diffraction, our
single-crystal neutron magnetic diffraction from CORELLI
collected a total of 7921 magnetic events across a range of
wavelengths, which represent 899 independent reflections and
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TABLE I. Lattice structure refined by JANA2020 in the space group F 4̄3m. Zn ions occupy sites Zn1:(0, 0, 0) and Zn2:(0.25, 0.25, 0.25),
respectively. The lattice structure measured at CORELLI was refined first before the magnetic refinement. Measurements at both beam lines
used the same piece of single crystal.

Beam line of measurement TOPAZ CORELLI

Measurement temperature (K) 100 6
Wavelength range (Å) 0.6–3.5 0.8–2.4
d-spacing (Å) range �0.5 �0.7
Signal/uncertainty ratio I/δI �3 �3
Reflection events 5199 9511
Independent reflections 2759 859
Reflection families 144 59
Lattice constant a (Å) 8.4383(2) 8.4337(6)
Extinction type Secondary, mixed type, Lorentzian mosaic Secondary, mixed type, Lorentzian mosaic
Atomic position (16e) of iron 0.62457(9) 0.62408(9)
First atomic position (16e) of oxygen 0.38625(9) 0.38678(9)
Second atomic position (16e) of oxygen 0.86529(9) 0.86610(9)
Uiso(Fe) 0.00155(5) 0.00047(9)
Uiso(O1) 0.00283(18) 0.00156(23)
Uiso(O2) 0.00242(18) 0.00181(24)
Uiso(Zn1) 0.00221(23) 0.00025(12)
Uiso(Zn2) 0.00150(20) 0.00025(12)
R 4.18 5.84
goodness-of-fit 2.15 2.58

36 distinctive magnetic reflection families (Fig. 4, Table II).
This more comprehensive data set allows for refinement of a
noncollinear structure, as detailed below.

A. Maximal point symmetry of the magnetic unit cell

The basic magnetic wave vector Q = (1, 0, 1
2 ) (Fig. 2),

expressed in reciprocal space units of the fcc lattice, doubles
the magnetic unit cell of ZnFe2O4 to a × a × 2a. The wave
vector (1, 0, 1

2 ) is located at the high-symmetry point W on
the first Brillouin zone boundary of the fcc lattice, where
W possesses the 4̄2m point-group symmetry. For the 32
Fe3+ spins in the magnetic unit cell, the structure of Q
separates them into four blocks of spins with parallel or
antiparallel relationships, connected by translation vectors of
(a/2, a/2, 0), (0, 0, a), and (a/2, a/2, a) (Fig. 5) [9,11]. With
the parent pyrochlore lattice, the magnetic unit cell can be
simultaneously inspected through both (1, 0, 1

2 ) and (0, 1, 1
2 )

wave vectors (Fig. 5), and the spin structure is isotropic
within the a-b plane. This construction in Fig. 5 indicates that
time inversion 1′ is a good symmetry operation when it is
combined with spatial translations, and the ionic lattice allows
the nonmagnetic (gray) type of magnetic point groups such
as 4̄2m1′.

This doubling of the magnetic unit cell assumes a single-Q
spin structure. With the presence of three independent wave
vectors (1, 0, 1

2 ), (0, 1
2 , 1), and ( 1

2 , 1, 0) and the cubic parent
lattice, the antiferromagnetic domains in ZnFe2O4 could be
either single- or multi-Q type. We first discuss spin structures
of the single-Q type, treating the multi-Q scenario below. All
three single-Q domains have separated diffraction patterns,
and within the cubic parent structure, the only type of twin-
ning is the inversion symmetry breaking which does not affect
the diffraction intensity [31] (Appendix B).

B. Choices of the magnetic space group

As the magnetic unit cell doubles the lattice unit cell, the
Bravais lattice changes from face-centered cubic to body-
centered tetragonal. A reduction of symmetry in general
introduces extra degrees of freedom or uncertainties to specify
the lattice space group of the magnetic unit cell. Here, the loss
of the translational vector (a/2, 0, a/2), the face-centered vec-
tor in the parent cubic structure, leads to possibilities of both
symmorphic (I 4̄2m, No. 121) and nonsymmorphic (I 4̄2d , No.
122) types of body-centered-tetragonal space groups to de-
scribe the ionic lattice of ZnFe2O4. The difference is that the
cubic face-centered vector (a/2, 0, a/2) is reincorporated as
the gliding and screw axis vector (a/2, 0, 3a/2) in I 4̄2d .

From these lattice space groups I 4̄2m and I 4̄2d , only two
magnetic space groups of the black-white type of the second
kind, Ic4̄2m (No. 121.332) and Ic4̄2d (No. 122.338), are
compatible with the specific magnetic wave vector (1, 0, 1

2 ) in
ZnFe2O4. Both magnetic space groups include lattice space-
group operations in combination with antitranslations made
of (a/2, a/2, 0) or (0, 0, a) and the time-reversal operator 1′.
Together with normal operations at the origin (0, 0, 0) and
body-center translated position (a/2, a/2, a), spins in these
space groups acquire the parallel-antiparallel relationship
as Fig. 5.

The combination of eight 4̄2m point-group operations, the
body-centered vector (a/2, a/2, a), and the time-reversal op-
eration 1′ symmetrically connects spins in the magnetic unit
cell. It leaves only one independent spin in the space group
Ic4̄2d to describe all 32 spins. However, in the space group
Ic4̄2m, the lack of the gliding vector (a/2, 0, 3a/2) leads to
a degeneracy of two symmetry operations on each site under
all scenarios, and there are always two independent sets of
spins (colored vs gray in Fig. 6) in the magnetic unit cell. This
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FIG. 4. (a) Diffraction intensities of both lattice (black) and
magnetism (red), plotted for all events of the sample measured at
CORELLI. The intensities are plotted versus (h2 + k2 + l2) ∝ q2

hkl .
Each individual reflection family is contained within a vertical col-
umn; within a same column, there can be a degeneracy of several
reflection families. (b) Intensities versus (h2 + k2 + l2) for magnetic
diffraction events (crosses). Various colors (orange, green, blue,
burgundy, gray) are used to separate different reflection families
with degenerate d spacing. A simple functional form IM ∼ [1 +
cos(πh/2) cos(π l/2)]e−αq2

(circles) is plotted for comparison, with
h and l the even and half-integer indices of the reflection (h, k, l ).
Matching colors are used to relate calculated values to diffraction
data of the same reflection family. Concentric circles are used to
differentiate the d-spacing degeneracy. This functional form captures
the nearly binary feature of the diffraction intensities.

degeneracy of symmetry operations leads to strong constraints
for the spin direction as we discuss below.

We further explore potential magnetic space groups of
lower symmetry. While disordered ZnFe2O4 often demon-
strates a ferromagnetic state [13], our clean samples do not
have any perceivable FM behavior. We thus rule out magnetic
space groups with ferromagnetic type of point groups based
on Dzyaloshinsky’s principle [37]. We note that Ref. [10]
suggested Ic4̄2d as the choice of the highest-symmetry mag-
netic space group but ruled out Ic4̄2m based on molecular
field considerations in conjunction with Mossbauer studies.
Here, we work under the simple assumption of a body-

centered, purely antiferromagnetic state. With the enlarged
magnetic unit cell, all suitable magnetic space groups are
expected to be the black-white type of the second kind. A
survey of the symmetry operation reveals choices in Ic4̄ (No.
82.42), which is suggested by JANA2020 and was implied by
Ref. [11], and Ic222 (No. 23.52), which was suggested by
Ref. [10]. Together with Ic4̄2m and Ic4̄2d , these four magnetic
space groups are the only choices for antiferromagnetism in
ZnFe2O4 with the symmetry no lower than orthorhombic.

Ic4̄ and Ic222 are both symmorphic space groups and both
point groups 4̄ and 222 have half of the symmetry operations
removed from 4̄2m, including two mirror planes. The reduced
total number of 16 symmetry operations from the point group,
body-centered translation, and time reversal 1′ leaves both
magnetic space groups Ic4̄ and Ic222 with two independent
sets of spins for the whole magnetic unit cell, and with no
degeneracy of symmetry operations on each site.

C. Refinement based on representation analysis

The preceding analysis can be formally derived through
representation analysis [38], which is incorporated in
JANA2020 software [31,32]. In the paramagnetic phase of
ZnFe2O4, the F 4̄3m space group of the parent lattice has
24 symmetry operations separated into five classes. With the
nonzero wave vector (1, 0, 1

2 ), a purely rotational point group
4̄ is derived from the original point group [11] to form the
wave-vector group G0, which leaves the wave vector invariant
[38]. Here, 4̄ represents the kernel symmetry of the antiferro-
magnetic (1, 0, 1

2 ) order, and the point group 4̄2m represents
the higher-level epikernel symmetry because of the mirror
planes. We can thus separate all four choices of magnetic
space group into three levels of symmetry, with Ic4̄2d and
Ic4̄2m at the epikernel level, Ic4̄ at the kernel level, and Ic222,
which cannot be directly derived through the epikernel-kernel
relationship; Ic222 can only be derived from Ic4̄2m [10] based
on Landau’s theory of continuous phase transitions, but not
from Ic4̄2d and Ic4̄.

As an Abelian group of four elements, 4̄ has four one-
dimensional irreducible representations (irreps); Ref. [11]
listed the irreps together with associated basis functions for
ZnFe2O4. Each of the four irreps (mW 1–mW 4) can be as-
sociated with the three kernel and epikernel space groups
we discussed above, based on a different origin of symmetry
operations. Using JANA2020, we refine spin structures for all
distinct combinations of magnetic space group and irrep.

For magnetic diffraction data taken from the clean-limit
crystal at CORELLI at 6 K, the lattice structure is first re-
fined including the extinction effect, generating the results in
Table I. The magnetic structure is subsequently refined us-
ing the updated lattice information. All parameters of atomic
positions and thermal parameters are fixed during this stage.
This is mainly because for diffraction data at 6 K, all refined
lattice thermal parameters Uiso are near zero. If they are al-
lowed to float during the refinement of magnetism, the refined
values could fluctuate to negative values which would appear
unphysical. In the second stage of magnetism refinement, we
constrain the extinction effect for both lattice and magnetism
to be the same and refine it once again.
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TABLE II. Refinement results of the antiferromagnetic structure. One or two independent spins exist for each magnetic space group at M1

(colored), and M2 (gray) in Fig. 6. × indicates zero based on the symmetry-forbidden condition. The refined parameters for mW 1 and mW 2
are listed here, as mW 3 and mW 4 are, respectively, degenerate with equivalent spin structures and similar parameters.

Beam line CORELLI

T (K) 6
λ range (Å) 0.8–2.4
Magnetic reflection events 7921
Independent reflections 899
Magnetic reflection families 36
Magnetic space group Ic4̄2d Ic4̄2d Ic4̄2m Ic4̄2m Ic4̄ Ic4̄ Ic222
Representations mW 1 & mW 4 mW 2 & mW 3 mW 1 & mW 4 mW 2 & mW 3 mW 1 & mW 4 mW 2 & mW 3
M1a(μB ) 3.0663 (4) 3.0374 (5) −2.4065 (8) 1.8263 (8) −1.913 (16) 2.04 (2) 2.441 (3)
M1b(μB ) −0.3960 (12) 0.4163 (11) −M1a −M1a 2.836 (12) −1.63 (2) 0.753 (7)
M1c(μB ) −0.0882 (15) −0.4022 (14) × × 0.146 (16) −0.03 (14) 0.022 (2)
Total M1(μB ) 3.0930 (19) 3.0920 (18) 3.4033 (12) 2.5827 (11) 3.42 (3) 2.61 (14) 2.554 (8)
M2a(μB ) × × 1.8595 (9) −2.4006 (8) −2.115 (15) −2.247 (19) −3.084 (6)
M2b(μB) × × M2a M2a −1.52 (2) −2.561 (19) 1.344 (11)
M2c(μB ) × × −0.1186 (19) 0.5326 (18) 0.122 (3) 0.550 (12) 0.968 (4)
Total M2(μB) × × 2.632 (12) 3.437 (2) 2.61(3) 3.45 (3) 3.501 (14)
Rlat 6.22 6.23 5.86 5.85 5.86 5.85 5.86
Rmag 8.79 8.64 8.72 8.55 8.73 8.49 8.73
goodness-of-fit 2.64 2.59 2.55 2.50 2.55 2.51 2.53

In addition to kernel and epikernel space groups, we also
include Ic222 as a low-symmetry alternative. The inclusion of
space groups of different (and lower) symmetries provides an
understanding of certain symmetry elements’ stability. Sev-
eral irreps have essentially identical refined spin structures in
the same magnetic space group, and we can identify seven
unique spin structures that are summarized in Fig. 6 and
Table II. All refinements generate similar R and GOF values;
these are dominated by systematic issues of extinction correc-
tion at the lattice refinement stage discussed above.

D. Single-Q vs multi-Q spin structures

Before evaluating results under the single-Q scenario, we
first explore whether ZnFe2O4 could also be in a multi-Q
state. For a triple-Q state, the magnetic unit cell doubles along
all three dimensions to 2a × 2a × 2a. As two spins sepa-
rated by (a, 0, 0) cannot simultaneously satisfy the parallel
and antiparallel conditions set by the (1, 0, 1

2 ) and ( 1
2 , 1, 0)

orders, respectively, each Q order in the triple-Q state must
come from separated spin components and there will be no
combined reflection such as ( 3

2 , 3
2 , 3

2 ); the diffraction pattern
of a multi-Q state would be identical to that of single Q [39].

A single-Q state can be unambiguously identified if there
is a reduction of lattice symmetry associated with the mag-
netic phase transition [40,41]. However, the antiferromagnetic
transition in ZnFe2O4 is of second-order nature and demon-
strates no observable structural modification. On the other
hand, there exists indirect evidence against a multi-Q state,
which results from higher-order spin-spin interaction terms
in the Hamiltonian, and is more often seen in 4 f /5 f mag-
nets such as Gd2Ti2O7, CeB6, UO2, and UP [40,42]. The
higher-order terms typically have stronger influence at lower
T , so multi-Q states emerge at a second phase transition
below TN in Gd2Ti2O7 and UP. As 3d spins are of Heisen-
berg type with little anisotropy in the exchange interaction,

a single-Q state is more likely to happen than a multi-Q
state [40].

A multi-Q state can be verified by applying anisotropic
external fields such as uniaxial strain or magnetic field;
for example, cubic CeB6 transitions from a double-Q to
a single-Q state under increasing magnetic field [40]. We
characterized the antiferromagnetic field-temperature phase
diagram of ZnFe2O4 using both DC magnetic susceptibil-
ity and heat capacity. With H ‖ (1, 0, 0) and H ‖ (1, 1, 0),
M/H vs T in Fig. 7 has a very weak field dependence.
With H ‖ (1, 0, 0) and H ‖ (1, 1, 1), heat capacity Cp mea-
sured to 9 T are always consistent with M/H (Fig. 7).
The antiferromagnetic phase boundary persists to 14 T
with TN changing by ∼0.5 K (Fig. 7). Both heat capac-
ity and magnetic susceptibility indicate that the magnetic
phase transition is always second order and there is no ad-
ditional phase transition over the whole H-T space. For all
three crystalline directions, the phase diagrams TN(H ) are
isotropic, consistent with isotropic (Heisenberg-type) spin
interactions in ZnFe2O4. H-T phase diagrams along all three
directions support a single-Q antiferromagnetic state.

Spins separated by (a, a, a) would be of opposite sign for
all three vectors of the triple-Q state. The magnetic cell is
thus a primitive but not body-centered type for spins. Using
JANA2020, we refine for both double-Q and triple-Q spin
structures with various irreps of several allowed magnetic
space groups such as Pc4̄21m, Pc4̄2m, PI 4̄3m, PI 4̄3n, and
PI 213. Both R and GOF values do not improve with the addi-
tional degrees of freedom, and these refinements all generate
moments ranging from zero to full sizes on independent spin
sites. We conclude a multi-Q state is not favored.

E. Stacked ferromagnetic and antiferromagnetic tetrahedra

All of the possible refined magnetic structures of ZnFe2O4,
in the different magnetic space groups discussed above (Fig. 6
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FIG. 5. (a) All 32 B sites of AB2O4 spinels in a magnetic unit cell
of a × a × 2a can be grouped into eight tetrahedra marked as 1 to
8. Equivalent tetrahedra in neighboring magnetic unit cells and the
intertetrahedra bonds are included to demonstrate the translational
relationship according to the vector (a/2, a/2, 0). (b), (c) The eight
tetrahedra can be grouped into four equivalent rectangular blocks
(blue and pink) of two tetrahedra each. As the blocks are connected
by three vectors (a/2, a/2, 0), (0, 0, a), and (a/2, a/2, a), spins in
pink and blue blocks are antiparallel to satisfy the antiferromagnetic
wave vector. The equivalency of (1, 0, 1/2) and (0, 1, 1/2) vectors
can be viewed as different constructions of blocks in (b) and (c),
respectively.

and Table II), are noncollinear and of three-dimensional type.
We note here the common features of these spin structures, as
they represent the definitive characteristics of antiferromag-
netism in ZnFe2O4. First, spins lie predominantly within the
a-b plane, as the c-axis component in all kernel and epikernel
models varies only from 0 to 0.5 µB. Spin arrangements within
the a-b plane would necessarily be noncollinear because of
symmetry operations on the limited number (one or two)
of independent spins. Second, all refined spin structures can
be viewed as consisting of eight spin clusters, each with
four nearly parallel (ferromagnetically aligned) spins (Fig. 6);
these eight FM tetrahedra are arranged antiferromagnetically
within the magnetic unit cell.

In Fig. 4(a), the measured intensities of lattice and
magnetic reflections are plotted against (h2 + k2 + l2) or
equivalently q2

hkl , with qhkl the wave vector of reflection
(h, k, l ). While magnetic diffraction intensities IM evolve by
the overall q-dependent magnetic form factor IM ∼ e−αq2

,
they also demonstrate significant variations as a function of
(h, k, l ), reflective of the magnetic structure factor of the or-

der. The magnetic intensities IM [Fig. 4(b)] can be modeled by
a simple expression

IM ∼ [1 + cos(πh/2) cos(π l/2)], (1)

where h, k, and l are the even, odd, and half-integer in-
dices, respectively, of the reflection (h, k, l ). This form was
included in a complex expression for the diffraction intensity
in Ref. [11]. It is possible to track the origin of Eq. (1) to four
spins on a single tetrahedron of the pyrochlore lattice. While
multiple models for the spin structure of individual tetrahedra
can generate Eq. (1), one scenario that is consistent with all
our refinement results is four parallel spins along any direc-
tion, so IM ∼ [

∑4
i=1 exp (iqhklri )]2. As the simple expression

of Eq. (1) captures the main features of our experimental
results [Fig. 4(b)], the remaining differences are indicative of
fine details of antiferromagnetically aligned components.

Alternatively, the same spin structures can be viewed as
a stack of tetrahedra where each is composed of four anti-
ferromagnetically arranged spins in the a-b plane (Fig. 6).
In some spin models, there exists a small ferromagnetic
component along the c axis in one type of antiferro-
magnetic tetrahedra while the other type has a net zero
moment; this issue will be addressed in detail below. We
thus have two equivalent perspectives of the spin structure
in ZnFe2O4, regarding it either as a set of antiferromagneti-
cally arranged FM spin clusters, or as stacked zero-moment,
locally antiferromagnetic tetrahedra. These two perspectives
are not contradictory, as the pyrochlore lattice is made
of corner-sharing tetrahedra positioned in a diamond–zinc-
blende structured network [Fig. 1(a)]. The nearest-neighbor
tetrahedra of an AF type are always of FM type, and vice
versa, forming a three-dimensional checkerboard pattern.
Each individual spin is situated at the junction of two tetra-
hedra and is ferromagnetically aligned to three spins on one
side, and antiferromagnetically aligned to another three spins
on the other side.

F. Symmetry and choice of the spin structure

In order to differentiate between the possibilities and iden-
tify the proper magnetic space group and spin structure, we
next explore the evolution of the checkerboard spin structure
in ZnFe2O4 as imposed symmetry constraints are reduced.
The four space groups in Fig. 6 provide at least three lay-
ers of symmetry hierarchy. The epikernel groups Ic4̄2m and
Ic4̄2d both possess the mirror planes and, between them, they
exchange the degrees of freedom of two independent spins to
the displacement vector (a/2, 0, a/2) of the parent fcc lattice
and one spin. The kernel group Ic4̄ loses the mirror planes
but keeps the fourfold axis. The lowest-symmetry group Ic222
lacks both mirror planes and the fourfold axis.

Refining in the symmorphic group Ic4̄2m, the degeneracy
of symmetry operations has spins on the mirror planes con-
fined to directions perpendicular to the planes they are located.
Half of the Fe spins in the unit cell would therefore align
strictly along either (1, 1, 0) or (1,−1, 0) directions within
the a-b plane with no c-axis component (Table II) [blue spins
in Figs. 6(c) and 6(d)]. In space group Ic4̄2m, the other half of
spins [gray ones in Figs. 6(c) and 6(d)] are not located on a
mirror plane, and the mirror operations restrict their in-plane
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FIG. 6. A summary of refined noncollinear spin structure in four different magnetic space groups and their irreps. (a), (b) Ic4̄2d , with one
independent set of spins (red). (c), (d) Ic4̄2m, with two independent sets of spins (blue and gray). Spin components in the a-b plane are strictly
along the (1, 1, 0) or (1,−1, 0) directions for both species. (e), (f) Ic4̄, with two independent sets of spins (burgundy and gray). (g) Ic222, with
two independent sets of spins (green and gray). The schematics are viewed along the c axis and include half of the magnetic cell within the
drawn boundary a × a of the unit cell in the a-b plane. 16 spins within half of a magnetic unit cell form four FM clusters and in the middle,
there is an AF tetrahedron. Spins in the other half of the unit cell all reverse directions. Moving from the center of the AF tetrahedron by the
fcc vector (a/2, 0, a/2), there is a second AF tetrahedron, which is likewise surrounded by FM tetrahedra; only three out of four were drawn
here. The perspective has atoms fading in color going towards the opposite c-axis direction into the page. + or − markers by each spin indicate
positive or negative c-axis spin components, respectively. For those unmarked, the c-axis component is either restricted to zero by symmetry
[(c) and (d)] or refined to values of statistical zero [(f) and (g)]. While spin structures refined from irreps mW 1 and mW 2 are plotted here and
listed in Table II, other degenerate irreps are also listed under each schematic.
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FIG. 7. Representative scans of magnetic susceptibility M/H are
plotted for (a) H ‖ (1, 1, 0), and (b) H ‖ (1, 0, 0). All curves are
zero-field cooled, except for the lighter traces in (a) which are field
cooled. (c)–(e) Heat capacity Cp in the magnetic transition region,
with field aligned along (c), (d) (1, 1, 1) and (e) (1, 0, 0) axes, are
plotted together with magnetic susceptibility at the same field. Both
measurements consistently mark the antiferromagnetic phase tran-
sition under field. Further measurements of Cp at field intervals of
1–2 T along these two axes (not shown) also reveal no extra phase
below TN to 9 T. (f) H -T phase diagram to 14 T based on magnetic
susceptibility data, demonstrating a very weak field dependence and
isotropy along all directions.

components again parallel to either (1, 1, 0) or (1,−1, 0)
directions, in addition to the c-axis components. This mirror-
symmetry restriction persists through all irreps with different
origins of group Ic4̄2m, and is the main reason spins reside
in the a-b plane and become parallel on a tetrahedron. The
dominant components in the a-b plane and FM clusters in
all refinement models in Fig. 6, despite mirror operations are
no longer being required in both magnetic space groups Ic4̄
and Ic222, can be regarded as a confirmation of the mirror
symmetry’s presence in the spin structure.

In all three space groups Ic4̄2m, Ic4̄, and Ic222, we no-
tice that the two independent sets of spins each form an
antiferromagnetic tetrahedron, which are separated by the dis-
placement vector (a/2, 0, a/2) of the parent fcc lattice (color
vs gray in Fig. 6). These two antiferromagnetic spin clusters
are of nearly orthogonal relationship as one has spins pointing
toward the center of the tetrahedron while the other has spins
aligned tangential to the tetrahedron (Fig. 6). This degree of

freedom of two independent spins provides the possibility
for spins to remain aligned closely to the (1, 1, 0) family of
directions in both groups Ic4̄ and Ic222. In contrast, when
the number of independent spins is reduced to one in space
group Ic4̄2d , the spin alignment is dramatically changed to
be mostly along (1, 0, 0) family of directions, despite the
presence of mirror operations. The resulting antiferromag-
netic tetrahedron is similar to the average of two orthogonal
antiferromagnetic configurations in all groups Ic4̄2m, Ic4̄, and
Ic222. Two key components of the spin structure in ZnFe2O4

are thus the mirror symmetry and two independent spin sites.
They lead to (1, 1, 0)-aligned spins and their configuration can
only be destroyed by excessive symmetry constraints during
refinement. We can thus identify Ic4̄2m as the sole suitable
magnetic space group.

There remain two distinctive spin structures based on two
irreps in Ic4̄2m. Their difference lies in how each independent
set of spins form the antiferromagnetic tetrahedra. In Fig. 6,
we note that irrep mW 1 for Ic4̄2d , Ic4̄2m, and Ic4̄ always
provides a distorted all-in-all-out type of antiferromagnetic
configuration [Figs. 6(a), 6(c), 6(e)]. By contrast, irrep mW 2
of all three groups always leads to a two-in-two-out configura-
tion [Figs. 6(b) and 6(f)]. As spin moments are mostly in the
a-b plane, the all-in-all-out and two-in-two-out configurations
in two dimensions are both antiferromagnetic. However, when
spins can be three dimensional, as in ZnFe2O4 with a small
c-axis component, the two-in-two-out type would introduce
a minute yet finite FM moment for each tetrahedron, which
eventually averages out across the magnetic unit cell. The
all-in-all-out type would always sum to a zero net moment
along all directions in all models.

For irreps such as mW 2, which lead to a two-in-two-out
type of antiferromagnetism in all three space groups, we no-
tice individual c-axis components, at ∼0μB and 0.40–0.55μB,
are largely different, and are significantly larger than that of
all-in-all-out spin configuration (0–0.15μB) based on irreps
mW 1 and its equivalents (Table II). In space group Ic222,
where these four irreps no longer apply, the all-in-all-out
antiferromagnetic configuration persists with a zero net mo-
ment, yet the largest c-axis component in our refinements
rises in the antiferromagnetic configuration of spins tangential
to the tetrahedron [Table II, gray spins of Fig. 6(g)]. Spin
components along the c axis that are permitted by symmetry
would exist because of Dzyaloshinsky’s principle [37], yet
large c-axis components seem like mathematical artifacts. Ir-
rep mW 1 in the magnetic space group Ic4̄2m [Fig. 6(c)] thus
leads to the physically most sensible spin structure for the
antiferromagnetism in ZnFe2O4. We note the irrep choice of
mW 1 or mW 2 does not affect the discussion from here on.

G. Breathing lattice and the checkerboard pattern

The phenomenon of two contrasting types of tetrahedra
with only one species of spins is not often observed in
long-range-ordered pyrochlore magnets [6]. For Ising-type
all-in-all-out antiferromagnets such as Cd2Os2O7 [5], the spin
structure on tetrahedra is uniform in the bulk, varying at
ferromagnetic domain walls which would not be counted as a
stable thermodynamic phase [43,44]. With a Curie-Weiss tem-
perature TCW ∼ −25 K and TN = 9.95 K, the spin structure
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FIG. 8. Detailed view of two neighboring Fe tetrahedra in the
breathing pyrochlore lattice, based on lattice parameters at 6 K as
listed in Table I. The atomic species are Fe (red), O1 (light blue), O2
(deep blue), Zn1 (light gray), and Zn2 (deep gray). Here the Fe-O
bond lengths differ by 2% between large and small tetrahedra, while
the Fe-O-Fe bond angle is larger by ∼0.6◦ in the smaller tetrahedra.
The straight O1-Fe-O2 bond angles are 180◦ to a resolution of 0.01◦.

in ZnFe2O4 is not expected to be greatly frustrated. Instead,
the viability of coexisting FM and AF tetrahedra stems from
a degree of freedom that is already present in the lattice: the
space group F 4̄3m of broken inversion symmetry.

Because of the breathing mode of the pyrochlore lattice,
every spin is located at the joint point of one large and one
small tetrahedron. Its coupling to neighbor spins depends on
both Fe-O-Fe superexchange and direct Fe-Fe exchange, in
a delicate balance among many different orbit choices [23].
The lattice structure based on CORELLI data refinement
(Table I) is drawn in Fig. 8. The Fe-O and Fe-Fe distances
both differ by 2% between two different-sized tetrahedra,
suggesting stronger exchange couplings for spins on smaller
tetrahedra. Furthermore, the Fe-O-Fe bond angle 95.11◦ on
the small tetrahedra is about 0.6◦ larger than the equivalent
bond angle on the large tetrahedra. In our previous refinement
[23], the relationship between these two angles was opposite
with the small tetrahedra hosting a narrower Fe-O-Fe angle.
As bond angles are sensitively dependent on the details of
refined atomic positions, here our improved, full refinement
clarifies this relationship. The Fe-O-Fe angle at ∼95◦ is close
to the boundary between ferromagnetic and antiferromagnetic
types of superexchange interaction [23]. For parallel spins on
the large tetrahedra, the exchange interaction would be weak
even when it is ferromagnetic, and the increasing Fe-O-Fe
angle on small tetrahedra would support stronger antiferro-
magnetic interaction [23]. Both the negative TCW and the
long-range-ordered ground state indicate the antiferromag-
netic interaction should be the type that dominates.

V. DISCUSSION

The refined staggered moment of the antiferromagnetic
order is relatively small, averaging only ∼3.0µB per Fe ion

(Table II). This is consistent with the moment sizes reported
by previous neutron magnetic powder diffraction studies
[9–11]. Our previous study of the Curie-Weiss behavior [23]
revealed an individual moment of 5.53 µB per Fe ion, very
close to the expected 5.92 µB of s = 5

2 . In all previous neutron
magnetic scattering experiment with strongly disordered spec-
imens [7,9–17,23], a large amount of magnetic diffuse scatter-
ing was observed. Accordingly, some of the missing moments
might be recovered in the elastic channel as frozen (static)
short-range correlations. For our clean-limit single crystals
with no observable magnetic diffuse scattering (Fig. 2), the
missing moments would exist in the inelastic (dynamic) chan-
nel, with some as long-range coherent magnons [45].

In the classical spin-liquid systems ZnCr2O4 and
MgCr2O4, dispersionless flat bands of excitations were
observed surrounding the (2, 2, 0) reciprocal space point
[21,46–48]. This special feature of inelastic scattering was
attributed to either a local mode based on a hexagonal ring
of spins named hexamer [21,46], or several local zero modes
of hexamer and heptamer [21,48], in addition to spin waves
based on multiple interactions between spins on the six-spin
ring [49]. However, in both ZnCr2O4 and MgCr2O4, the
magnetic ground state is complicated, with multiple k orders
such as ( 1

2 , 1
2 , 0), (0, 1, 1

2 ), and (0, 0, 1) [21,49]. By contrast,
ZnFe2O4 has a cubic lattice and a single magnetic structure,
which allows us to offer a simple alternative explanation for
the excitation in chromates based on the antiferromagnetic
ground state of (1, 0, 1

2 ) order.
In Eq. (1) of Ref. [46], an analytical expression was used

to describe the inelastic spectral weight |F6(Q)|2, with the
index 6 indicating the hexagonal ring structure. Reference
[46] claimed that a hexamer is necessary as this spectral form
cannot originate from a four-spin structure on one octahe-
dron. However, we note that |F6(Q)|2 can be simplified to
|F6(Q)|2 ∼ 2[1 − cos(πh/2) cos(π l/2)] with h, k, l following
the even, odd, and half-integer notation in our Eq. (1). In such
a fashion, |F6(Q)|2 is directly related to our elastic spin scatter-
ing intensity IM in Eq. (1) as 2IM = 4 − |F6(Q)|2; here we take
unspecified coefficients of both IM and |F6(Q)|2 as unity, and
neglect the q-dependent spin form factor. A delta function of
spin correlations in real space 〈SrSr′ 〉 = δ(r − r′), i.e. a fully
disordered, uncorrelated spin state, would Fourier transform
into a uniform spin density in reciprocal space, 〈S2

q〉 = const.
As spin moments are summed over both static and dynamic
channels, the inelastic spectrum of ZnCr2O4 should be com-
plementary to a (1, 0, 1

2 ) ordered antiferromagnetic structure
such as that of ZnFe2O4. As the mathematical structure of IM

can be derived from four parallel spins on one tetrahedron,
the inelastic spectrum in Ref. [46] could have a simple ex-
planation of uncondensed fluctuations in the paramagnet that
compensate a four-spin FM cluster.

This comparison of analytical forms of IM in Eq. (1) and
|F6(Q)|2 in Ref. [46] can be directly visualized in the spectral
distributions of the spin density in reciprocal space (Fig. 9).
The inelastic patterns of ZnCr2O4 in Fig. 3 of Ref. [46]
are fully complementary to the spin-elastic diffuse scattering
pattern of a ZnFe2O4 specimen with a high level of disorder
[23] (Fig. 9). The static spin spectral weight centers around
(4, 0, 0) and (4, 4, 0) positions (Figs. 2 and 9). The inelas-
tic scattering in Fig. 9(b) can be viewed as eight equivalent

064421-11



MARGARITA G. DRONOVA et al. PHYSICAL REVIEW B 109, 064421 (2024)

-3 -2 -1 0 1 2 3
-4

-2

0

2

4
(0
,0
,L

)(
r.l

.u
.)

(H,H,0) (r.l.u.)

(a)

(b)

-4 -2 0 2 4

-4

-2

0

2

4

(0
,K
,0

)(
r.l

.u
.)

(H,0,0) (r.l.u.)

10-6

10-5

10-4

10-3

10-2

10-1

100

FIG. 9. A comparison of the elastic magnetic diffuse scattering
of ZnFe2O4 (full frames) at 6 K and inelastic spin scattering of
ZnCr2O4 (partial overlays) at ∼1 meV and 15 K. (a) A view of the
reciprocal zone spanned by the (H, H, 0) and (0, 0, L) axes. (b) A
view of the reciprocal zone spanned by the (H, 0, 0) and (0, K, 0)
axes. The magnetic diffuse scattering was measured from a specimen
with a high level of inversion disorder so the spectral weight of static
spin correlation spreads more visibly across reciprocal space, and
has little difference below and above TN. The diffuse data in (b) were
previously reported in Ref. [23] and rescaled for the plots here; the
data in (a) are not previously published. Intensities are scaled relative
to the highest-count single pixel. Our magnetic diffuse scattering
data from disordered crystals [23] are similar to results reported in
Ref. [16]. Both sets of ZnCr2O4 inelastic scattering data are adapted
from Ref. [46].

(1, 0, 1
2 ) W points surrounding the (2, 2, 0) position and the

smearing of spectral weight could be due to short-range spin
correlations originated from structural and chemical disorder.
Our explanation of the excitation spectrum should also apply
to MgCr2O4, as higher-energy excitation bands [21] have
much weaker spectral weight than that of the first resonance
band. In Ref. [49], a spin-wave spectrum was built on a
Hamiltonian utilizing four interactions over three neighbor
distances, which can be similarly applied to ZnFe2O4. The
structure of MgCr2O4 does not have a breathing lattice to
accommodate the (1, 0, 1

2 ) type of spin order as the ground

state, so a large structural distortion and multiple magnetic
wave vectors emerge below TN. While both Refs. [21,49]
recognize (1, 0, 1

2 ) as part of the puzzle, our results suggest
this order should be the major magnetic instability of all these
chromate and ferrite systems and can potentially explain most
features of their inelastic spectra. Inelastic resonance bands
in those chromates have been attributed to local zero-spin
modes such as the six-spin ring mode, leading to assignments
of those systems as classical spin liquids. A full exploration
of fluctuations complementing to the long-range, (1, 0, 1

2 )
vector-modulated, noncollinear spin structure in ZnFe2O4

could shed light into these molecular local modes and classical
spin liquids. It remains to be verified whether inelastic neutron
scattering of ZnFe2O4 crystals of minimal disorder would
be instrument resolution limited or dispersionless such as
those in ZnCr2O4 and MgCr2O4. Such a study can potentially
bring a comprehensive understanding of the role of chemical
disorder.
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APPENDIX A: NEUTRON DIFFRACTION
DATA REDUCTION

The typical process of data reduction for time-of-flight
(TOF) neutron diffraction is illustrated in Ref. [33]. The
detector electronics at both beam lines allow each neu-
tron’s wavelength to be recorded based on its arrival time
at the detector. The information of both wavelength and
the detector’s position allows all diffraction events to be
converted into reciprocal space without knowledge of the
UB matrix. For measurements at TOPAZ, it is possible to
integrate regions of dense counts before determining the
primitive (Niggli) cell and in turn the orientational UB ma-
trix. For CORELLI, a preliminary UB matrix is typically
established before the extended measurement in order to
verify the correct zone of interest. The current data reduc-
tion script provides a final optimization of the UB matrix
for data sets from both beam lines [36]. The finalized UB
matrix provides the measured lattice constants and their
uncertainties.

The conversion to reciprocal space collapses all single-
crystal diffraction events of one specific reflection into one
single volume [33]. After that, a proper treatment of events
with a spread of neutron wavelengths is the central issue.
If the integration range is overly narrow, the listed events
would have a poor signal versus background ratio. On the
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other hand, if the integration is over a widewavelength range,
diffraction signals with largely different extinction effects are
summed together, making the potential correction inaccurate.
For our monolithic single crystal, the mosaic across the whole
sample volume is of order of 0.02◦ to 0.05◦ FWHM, much
smaller than the neutron beam divergence which is of order
of 5◦ FWHM. Thus, the incident beam’s angular divergence
determines the total spread of neutrons wavelengths as a
diffraction “event” for one reflection at the specific angular
position. For TOPAZ, placements of the sample’s angular
positions are far apart. For CORELLI, as the rotational step
is only 1.5◦, diffraction events on neighboring frames can be
correlated.

Previously, for time-of-flight neutron diffraction at
TOPAZ, each event of reflection (h, k, l ) was integrated with
one-dimensional profile fitting along the wave-vector Q di-
rection [30], using a Gaussian profile convoluted with an
exponential form to account for the tail at the long-wavelength
side. This integration scheme was applied to our previous
analysis in Ref. [23]). Here, we improve the integration
scheme to profile fitting in the three-dimensional reciprocal
space, and the new data reduction procedure now applies to
neutron diffraction at both TOPAZ and CORELLI [36]. It is
similar to the procedures described in Ref. [33] but with a few
variations. The three-dimensional profile fitting first is carried
out for all events of one reflection. The data set summed
over all events allows the best statistics to determine the peak
profile. This is essential for CORELLI as it employs helium-
3 tubes as detectors; these have lower efficiency compared
to to the scintillator-based Anger cameras at TOPAZ. While
Ref. [33] would fit the two-dimensional detector’s transverse
directions with bivariate Gaussian forms in addition to the
time-of-flight profile, here we define the three axes of the
ellipsoid fully in the reciprocal space by QP, Q1, and Q2. The
primary wave vector QP is the radial vector of the (h, k, l )
reflection, while Q1 and Q2 are vectors transverse (perpendic-
ular) to QP.

Once the profile envelope is established, one can divide
different wavelength contributions to a given reflection into
subsets of the whole. For both TOPAZ and CORELLI, a
natural division is the individual event of one frame at a
fixed sample angular position; combining diffraction events of
the same reflection on two neighboring frames at CORELLI
introduces further complications for samples with strong ex-
tinction. To integrate individual subset, the width parameters
of the full profile fitting are used, in order to avoid large fluc-
tuations of the integrated Q volume associated with reduced
counting statistics.

After further corrections such as the detector efficiency
and the Lorentz factor for TOF type of neutron diffrac-
tion, the diffraction data are reduced to line entries tabulated
with the h, k, l indices of the reflection, integrated inten-
sity I and its measurement uncertainty δI , central neutron
wavelength λ of the event, 2θ angle, together with other
detector-related information [36]. A single reflection (h, k, l )
can have several independent events recorded with different
central wavelengths. For cubic systems, there exist many
equivalent reflections of permutated h, k, l values, so one
family of equivalent reflections could have tens of events
across a wide-wavelength range (Fig. 3). Integrated intensities

from two beam lines are very consistent (Fig. 3), despite
utilizing different types of neutron detectors and the data hav-
ing very different statistics because of the measurement time
and pattern.

APPENDIX B: NEUTRON LATTICE REFINEMENT
WITH EXTINCTION CORRECTION

The measured diffraction intensity IM is related to the
structure factor Fhkl (λ) and its theoretically expected value
Fhkl as IM ∼ F 2

hkl (λ) = y(λ)F 2
hkl , with the factor y(λ) defined

as the extinction factor. This reduction mechanism origi-
nates from Darwin’s dynamic diffraction theory for perfect
crystals, which leads to the primary extinction yp [50]. For
mosaic crystals, the extinction ys is termed secondary and
has a convoluted effect between the limit of mosaic angular
spread (type I) and the domination of coherent domain size
(type II). In the limit of infinitely large coherent domains,
type-II crystals approach perfect crystals. For type-I crystals,
the difference in the mosaic shape separates this category
into Gaussian and Lorentzian types, which should become
equivalent in the limit of type-II and perfect crystals when the
coherent domain size dominates. Reference [50] fits their nu-
merically calculated extinction factors to a general analytical
form

yp,s =
[

1 + 2x + A(θ )x2

1 + B(θ )x

]−1/2

, (B1)

as A(θ ), B(θ ), and x have different expressions for different
extinction types (primary, and secondary of types I, mixed,
and II) and different mosaic shapes (Gaussian vs Lorentzian).
Being a reflection-dependent variable, x includes the structure
factor Fhkl , wavelength λ, diffraction angle 2θ , the coherent
particle size R, the mosaic width g, and other parameters such
as polarization K and unit-cell volume V . The term 2x in
the brackets can be slightly modified to 2.12x for crystals of
Gaussian shaped mosaics.

Despite many theoretical studies [25,30,50–52], exper-
imental characterizations of the extinction effect remain
limited. Many studies can only correct for the extinction effect
with y > 0.30 in Refs. [25,52], y > 0.40 in Ref. [53], and
y > 0.50 in Ref. [30]. Many diffraction experiments also uti-
lize only a few wavelengths over a limited range; for example,
three neutron diffraction experiments using 0.527, 0.757, and
1.05 Å wavelengths were combined to analyze the extinction
effect in Ref. [52]. Over such a small range of y and λ,
theoretical models cannot be well differentiated and predict
F 2

hkl in the λ = 0 limit.
In Ref. [23], the analytical expression of Eq. (B1) was

applied to each individual family to extract F 2
hkl in the λ =

0 limit. However, there are two scenarios in which the
evaluation of the extinction effect by Eq. (B1) becomes
difficult. About 25% of the strong reflection families with
a large extinction effect cannot be properly portrayed by
Eq. (B1), even though they are measured over a large range
of wavelengths. For reflections of large transferred momenta,
diffraction events can only be measured over a very narrow
range of λ. Thus, the fitting of Eq. (B1) produces param-
eters with large uncertainties. For the first scenario, it is
customary to remove certain families of strong reflections
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from the refinement [26]. For the second scenario, fitting
each reflection family with Eq. (B1) to extract F 2

hkl can only
be performed when y(λ) is determined by fitting Eq. (B1)
to other medium-intensity reflection families measured over
a large-λ range [23]. We seek a global refinement with a
variable extinction effect y(λ, F 2

hkl ) incorporated in the soft-
ware. We also intend to take all diffraction events into
consideration.

There are several publicly accessible refinement packages
that can treat an input data set with a broad range of wave-
lengths, such as SHELXL, GSAS, and JANA. For extinction
correction, we note SHELXL (2014 version) uses a simplified
version of Eq. (B1) without the term containing A(θ ) and B(θ )
and only the expression of x for type-I crystal with Gaussian
type of mosaic. The term with A(θ ) and B(θ ) is to capture
the extinction behavior at large-x values, and for mosaic-
dominated crystals, no large extinction effect is expected.
Both features in SHELXL were thus designed to handle only
weak extinction effects. For GSAS (2004 manual), the listed
expressions of x for TOF neutron diffraction are questionable,
as TOF type of measurements should not have different x than
that of continuous-wave neutron diffraction [51]. Here, we
work with the software package JANA2020 (version 1.3.51)
[32]. In early versions of the software, the extinction pa-
rameter rhoiso was defined as the ratio of coherent domain
size to wavelength λ. In the current version, wavelength λ is
separated from rhoiso in order to properly handle a data set
with continuous wavelength; rhoiso now represents only the

coherent domain size. The results of the refinement for the
lattice are given in Table I and for the magnetic structure in
Table II.

The broken inversion symmetry of the F 4̄3m space group
introduces two structural domains. Domain degeneracy in
JANA is typically handled as a transpose matrix for indices.
However, Friedel’s law nearly always holds for neutron nu-
clear diffraction [31], as the neutron atomic form factor is a
constant independent of q. This is different from the x-ray
form factor, which has an anomalous behavior near absorption
edges so the imaginary part of the charge form factor f ′′
can break Friedel’s law to make the diffraction intensities of
(h, k, l ) and (−h,−k,−l ) different for systems with broken
inversion symmetry. Here we refine the single-crystal diffrac-
tion data under the F 4̄3m space group as one single domain.

Current extinction correction in JANA2020 utilizes the ana-
lytical form of Eq. (B1) while adapting to different scenarios.
While Eq. (B1) is an analytical expression and intuitive, it is
only an approximation of numerical calculations in Ref. [50].
For example, the analytical forms of B(θ ) for the Lorentzian
type of mosaic [50] have a gap at 2θ = 90◦, and further
discontinuities in its derivative of θ at 2θ = 90◦. To improve
the modeling of extinction correction, it is desirable to directly
apply the tabulated numerical results of y in Ref. [50] in
future. This simplifies the choice scenarios to only secondary
extinctions of Gaussian and Lorentzian mosaic crystals with
the lowest y values down to 0.025 and 0.09, respectively
(Tables 3 and 4 of Ref. [50]).
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